login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237654
G.f.: exp( Sum_{n>=1} 5*Fibonacci(n-1)*Fibonacci(n+1) * x^n/n ).
1
1, 0, 5, 5, 25, 49, 150, 365, 990, 2550, 6726, 17550, 46015, 120390, 315275, 825299, 2160775, 5656855, 14809980, 38772875, 101508876, 265753500, 695751900, 1821501900, 4768754125, 12484760124, 32685526625, 85571819345, 224029931845, 586517975725, 1535523995826, 4020054011225, 10524638038410
OFFSET
0,3
COMMENTS
Compare to the g.f. of A054888.
Given g.f. A(x), note that A(x)^(1/5) is not an integer series.
FORMULA
G.f.: 1 / ( (1-3*x+x^2) * (1+x)^3 ).
a(n) = (2*Lucas(2*n+5) + (28+25*n+5*n^2)*(-1)^(n))/50 where Lucas = A000032. - Greg Dresden, Jan 01 2021
EXAMPLE
G.f.: A(x) = 1 + 5*x^2 + 5*x^3 + 25*x^4 + 49*x^5 + 150*x^6 + 365*x^7 + ...
where the logarithm begins:
log(A(x)) = 5*1*2*x^2/2 + 5*1*3*x^3/3 + 5*2*5*x^4/4 + 5*3*8*x^5/5 + 5*5*13*x^6/6 + 5*8*21*x^7/7 + 5*13*34*x^8/8 + ...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, 5*fibonacci(m-1)*fibonacci(m+1)*x^m/m) + x*O(x^n)), n)}
for(n=0, 36, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 05 2014
STATUS
approved