OFFSET
1,1
COMMENTS
46410 = 2*3*5*7*13*17.
All terms are multiples of a(1) = 48.
For these numbers numerator(B_{k}) mod denominator(B_{k}) = 31933.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..1000
EXAMPLE
46410 = 2*3*5*7*13*17.
Bernoulli B_{48} is -5609403368997817686249127547/46410, hence 48 is in the sequence.
MAPLE
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do
if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 64722);
# Alternative: # according to Robert Israel code in A282773
with(numtheory): filter:= n ->
select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 7, 13, 17}:
select(filter, [seq(i, i=1..10^5)]);
MATHEMATICA
Select[48*Range[2600], Denominator[BernoulliB[#]]==46410&] (* Harvey P. Dale, May 17 2020 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Nov 24 2017
STATUS
approved