login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A295590
Numbers k such that Bernoulli number B_{k} has denominator 46410.
1
48, 10128, 16944, 21072, 25008, 28176, 31056, 33648, 35184, 39696, 42288, 52656, 55824, 59952, 60432, 62448, 71664, 73104, 77808, 78096, 82704, 83568, 84432, 91824, 93648, 98544, 100176, 100272, 102288, 107664, 108912, 110256, 110832, 112368, 114096, 117168, 120144
OFFSET
1,1
COMMENTS
46410 = 2*3*5*7*13*17.
All terms are multiples of a(1) = 48.
For these numbers numerator(B_{k}) mod denominator(B_{k}) = 31933.
LINKS
EXAMPLE
46410 = 2*3*5*7*13*17.
Bernoulli B_{48} is -5609403368997817686249127547/46410, hence 48 is in the sequence.
MAPLE
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do
if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 64722);
# Alternative: # according to Robert Israel code in A282773
with(numtheory): filter:= n ->
select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 7, 13, 17}:
select(filter, [seq(i, i=1..10^5)]);
MATHEMATICA
Select[48*Range[2600], Denominator[BernoulliB[#]]==46410&] (* Harvey P. Dale, May 17 2020 *)
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Nov 24 2017
STATUS
approved