login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A295595
Numbers k such that Bernoulli number B_{k} has denominator 1919190.
1
36, 3924, 6012, 7596, 8172, 11412, 12564, 12708, 14004, 15156, 15804, 16164, 19692, 20556, 21564, 22068, 22212, 26388, 27684, 30924, 34812, 35172, 35388, 39492, 41508, 41868, 42732, 43812, 45324, 45972, 46836, 46908, 47052, 49212, 52092, 53388, 53604, 53748, 58932
OFFSET
1,1
COMMENTS
1919190 = 2*3*5*7*13*19*37.
All terms are multiples of a(1) = 36.
For these numbers numerator(B_{k}) mod denominator(B_{k}) = 1280537.
LINKS
EXAMPLE
Bernoulli B_{36} is
-26315271553053477373/1919190, hence 36 is in the sequence.
MAPLE
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do
if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 1919190);
# Alternative according to Robert Israel's code in A282773:
with(numtheory): filter:= n ->
select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 7, 13, 19, 37}:
select(filter, [seq(i, i=1..10^5)]);
CROSSREFS
Cf. A282773.
Sequence in context: A165984 A297021 A304459 * A003744 A163034 A339121
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Nov 24 2017
STATUS
approved