login
Numbers k such that Bernoulli number B_{k} has denominator 64722.
1

%I #11 Dec 02 2017 07:53:09

%S 66,3894,4686,5214,6402,8382,9174,9834,10362,10758,11022,13134,14718,

%T 17754,20262,20922,22242,23034,23298,25014,25278,25674,26466,27786,

%U 28974,29634,30162,31614,34386,36102,37554,37686,38742,39534,40722,42438,44418,45606,46266

%N Numbers k such that Bernoulli number B_{k} has denominator 64722.

%C 64722 = 2*3*7*23*67.

%C All terms are multiples of a(1) = 66.

%C For these numbers numerator(B_{k}) mod denominator(B_{k}) = 62483.

%H Seiichi Manyama, <a href="/A295592/b295592.txt">Table of n, a(n) for n = 1..1000</a>

%e Bernoulli B_{66} is

%e 1472600022126335654051619428551932342241899101/64722, hence 66 is in the sequence.

%p with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do

%p if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,64722);

%p # Alternative: # according to Robert Israel code in A282773

%p with(numtheory): filter:= n ->

%p select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 7, 23, 67}:

%p select(filter, [seq(i, i=1..10^5)]);

%Y Cf. A045979, A051222, A051225, A051226, A051227, A051228, A051229, A051230, A119456, A119480, A249134, A255684, A271634, A271635, A272138, A272139, A272140, A272183, A272184, A272185, A272186, A272369.

%K nonn,easy

%O 1,1

%A _Paolo P. Lava_, Nov 24 2017