This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078989 Chebyshev sequence with Diophantine property. 6
 1, 67, 4421, 291719, 19249033, 1270144459, 83810285261, 5530208682767, 364909962777361, 24078527334623059, 1588817894122344533, 104837902484740116119, 6917712746098725319321, 456464203340031130959067, 30119719707695955917979101, 1987445036504593059455661599 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS One fourth of bisection (even part) of A041024. (4*a(n))^2 - 17*A078988(n)^2= -1 (Pell -1 equation, see A077232-3). LINKS Indranil Ghosh, Table of n, a(n) for n = 0..548 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (66, -1). FORMULA G.f.: (1 + x)/(1 - 66*x + x^2). a(n) = 66*a(n-1) - a(n-2) for n>=1, a(-1)=-1, a(0)=1. a(n) = S(2*n, 2*sqrt(17)) = -i*((-1)^n)*T(2*n+1, 4*i)/4 = S(n, 66) + S(n-1, 66) with i^2=-1 and S(n, x), resp. T(n, x), Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120. a(n) = A041024(2*n)/4. a(n) = (1/4)*sinh((2*n + 1)*arcsinh(4)). - Bruno Berselli, Apr 03 2018 EXAMPLE (x,y) = (4,1), (268,65), (17684,4289), ... give the positive integer solutions to x^2 - 17*y^2 =-1. MATHEMATICA LinearRecurrence[{66, -1}, {1, 67}, 20] (* Bruno Berselli, Apr 03 2018 *) PROG (PARI) x='x+O('x^99); Vec((1+x)/(1-66*x+x^2)) \\ Altug Alkan, Apr 05 2018 (GAP) a:=[1, 67];; for n in [3..20] do a[n]:=66*a[n-1]-a[n-2]; od; a; # Muniru A Asiru, Apr 05 2018 CROSSREFS Cf. A097316 for S(n, 66). Cf. A041024. Cf. similar sequences of the type (1/k)*sinh((2*n+1)*arcsinh(k)) listed in A097775. Sequence in context: A103727 A120663 A261974 * A156121 A280004 A211961 Adjacent sequences:  A078986 A078987 A078988 * A078990 A078991 A078992 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Jan 10 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 18 08:13 EST 2018. Contains 318218 sequences. (Running on oeis4.)