login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/( (1-x)*(1-34*x+x^2) ).
11

%I #38 Dec 04 2024 20:37:55

%S 1,35,1190,40426,1373295,46651605,1584781276,53835911780,

%T 1828836219245,62126595542551,2110475412227490,71694037420192110,

%U 2435486796874304251,82734857056306152425,2810549653117534878200,95475953348939879706376,3243371864210838375138585

%N Expansion of 1/( (1-x)*(1-34*x+x^2) ).

%C Numbers m such that r = 24*m+1 and 2*r-1 are both squares. - _Bruno Berselli_, Jul 17 2014

%H Vincenzo Librandi, <a href="/A029546/b029546.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (35,-35,1).

%F a(n) = A029549(n+1)/6 = A075528(n+1)/3.

%F From _Colin Barker_, Mar 02 2016: (Start)

%F a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3) for n > 2.

%F a(n) = ( (99-70*sqrt(2))*(17-12*sqrt(2))^n - 6 + (99+70*sqrt(2))*(17+12*sqrt(2))^n )/192. (End)

%F a(n) = ( Pell(2*n+3)^2 - 1)/24 = (Q(4*n+6) - 6)/192, where Q(n) = Pell-Lucas numbers. - _G. C. Greubel_, Jan 13 2020

%F Sum_{n>=0} 1/a(n) = 6*(3 - 2*sqrt(2)). - _Amiram Eldar_, Dec 04 2024

%p seq(coeff(series(1/( (1-x)*(1-34*x+x^2) ), x, n+1), x, n), n = 0..20); # _G. C. Greubel_, Jan 13 2020

%t LinearRecurrence[{35,-35,1},{1,35,1190},20] (* _Vincenzo Librandi_, Nov 22 2011 *)

%t Table[(Fibonacci[2*n+3, 2]^2 -1)/24, {n,0,20}] (* _G. C. Greubel_, Jan 13 2020 *)

%o (Magma) I:=[1,35,1190]; [n le 3 select I[n] else 35*Self(n-1)-35*Self(n-2) +Self(n-3): n in [1..20]]; // _Vincenzo Librandi_, Nov 22 2011

%o (PARI) Vec(1/(1-35*x+35*x^2-x^3)+O(x^20)) \\ _Charles R Greathouse IV_, Sep 23 2012

%o (Sage) [(lucas_number2(4*n+6, 2,-1) -6)/192 for n in (0..20)] # _G. C. Greubel_, Jan 13 2020

%o (GAP) List([0..20], n-> (Lucas(2,-1, 4*n+6)[2] -6)/192 ); # _G. C. Greubel_, Jan 13 2020

%Y Cf. A029547 (first differences), A245031 (see Comments line).

%Y Cf. A000129, A002203.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_