login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322904 a(n) = Sum_{k=0..n} binomial(2*n+1,2*k+1)*(n^2-1)^(n-k)*n^(2*k). 2
1, 1, 181, 38081, 14526601, 8943235489, 8138661470941, 10287228590683393, 17254778510170993681, 37095265466946847758401, 99474891266913130060486021, 325534304813775692747248543681, 1276941308627620432293188401109401, 5914558735952850788377566338591400673 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..193

Wikipedia, Chebyshev polynomials.

Index entries for sequences related to Chebyshev polynomials.

FORMULA

For n > 0, a(n) = (1/n) * T_{2*n+1}(n) where T_{n}(x) is a Chebyshev polynomial of the first kind.

For n > 0, a(n) = (1/n) * cosh((2*n+1)*arccosh(n)).

a(n) ~ 4^n * n^(2*n). - Vaclav Kotesovec, Jan 03 2019

MATHEMATICA

a[0] = 1; a[n_] := 1/n ChebyshevT[2n+1, n];

Table[a[n], {n, 0, 13}] (* Jean-Fran├žois Alcover, Jan 02 2019 *)

PROG

(PARI) {a(n) = sum(k=0, n, binomial(2*n+1, 2*k+1)*(n^2-1)^(n-k)*n^(2*k))}

(PARI) a(n) = if (n==0, 1, polchebyshev(2*n+1, 1, n)/n); \\ Michel Marcus, Jan 02 2019

(MAGMA) [&+[Binomial(2*n+1, 2*k+1)*(n^2-1)^(n-k)*n^(2*k): k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Jan 03 2019

CROSSREFS

Diagonal of A188646.

Cf. A253880, A302329, A302330, A302331, A302332.

Sequence in context: A224991 A189342 A189778 * A107075 A228134 A066626

Adjacent sequences:  A322901 A322902 A322903 * A322905 A322906 A322907

KEYWORD

nonn

AUTHOR

Seiichi Manyama, Dec 30 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 07:25 EST 2020. Contains 338632 sequences. (Running on oeis4.)