login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302331
a(0)=1, a(1)=141; for n>1, a(n) = 142*a(n-1) - a(n-2).
4
1, 141, 20021, 2842841, 403663401, 57317360101, 8138661470941, 1155632611513521, 164091692173449041, 23299864656018250301, 3308416689462418093701, 469771870039007351055241, 66704297128849581431750521, 9471540420426601555957518741, 1344892035403448571364535910701
OFFSET
0,2
FORMULA
G.f.: (1 - x)/(1 - 142*x + x^2).
a(n) = a(-1-n).
a(n) = cosh((2*n + 1)*arccosh(6))/6.
a(n) = ((6 + sqrt(35))^(2*n + 1) + 1/(6 + sqrt(35))^(2*n + 1))/12.
a(n) = (1/6)*T(2*n+1, 6), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Jul 08 2022
MATHEMATICA
LinearRecurrence[{142, -1}, {1, 141}, 20]
CoefficientList[Series[(1-x)/(1-142x+x^2), {x, 0, 20}], x] (* Harvey P. Dale, Jun 21 2021 *)
PROG
(PARI) x='x+O('x^99); Vec((1-x)/(1-142*x+x^2)) \\ Altug Alkan, Apr 06 2018
CROSSREFS
Sixth row of the array A188646.
Similar sequences of the type cosh((2*n+1)*arccosh(k))/k are listed in A302329.
Sequence in context: A221104 A202045 A066623 * A172738 A172814 A172865
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Apr 05 2018
STATUS
approved