login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(0)=1, a(1)=141; for n>1, a(n) = 142*a(n-1) - a(n-2).
4

%I #22 Jul 09 2022 21:48:11

%S 1,141,20021,2842841,403663401,57317360101,8138661470941,

%T 1155632611513521,164091692173449041,23299864656018250301,

%U 3308416689462418093701,469771870039007351055241,66704297128849581431750521,9471540420426601555957518741,1344892035403448571364535910701

%N a(0)=1, a(1)=141; for n>1, a(n) = 142*a(n-1) - a(n-2).

%H Colin Barker, <a href="/A302331/b302331.txt">Table of n, a(n) for n = 0..450</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (142,-1).

%F G.f.: (1 - x)/(1 - 142*x + x^2).

%F a(n) = a(-1-n).

%F a(n) = cosh((2*n + 1)*arccosh(6))/6.

%F a(n) = ((6 + sqrt(35))^(2*n + 1) + 1/(6 + sqrt(35))^(2*n + 1))/12.

%F a(n) = (1/6)*T(2*n+1, 6), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - _Peter Bala_, Jul 08 2022

%t LinearRecurrence[{142, -1}, {1, 141}, 20]

%t CoefficientList[Series[(1-x)/(1-142x+x^2),{x,0,20}],x] (* _Harvey P. Dale_, Jun 21 2021 *)

%o (PARI) x='x+O('x^99); Vec((1-x)/(1-142*x+x^2)) \\ _Altug Alkan_, Apr 06 2018

%Y Sixth row of the array A188646.

%Y Similar sequences of the type cosh((2*n+1)*arccosh(k))/k are listed in A302329.

%K nonn,easy

%O 0,2

%A _Bruno Berselli_, Apr 05 2018