This site is supported by donations to The OEIS Foundation.

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099397 Chebyshev's polynomial of the first kind, T(n,x), evaluated at x=51. 4
 1, 51, 5201, 530451, 54100801, 5517751251, 562756526801, 57395647982451, 5853793337683201, 597029524795704051, 60891157735824130001, 6210301059529265556051, 633389816914249262587201 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Used in A099374. Numbers n such that 26*(n^2-1) is square. [From Vincenzo Librandi, Nov 17 2010] LINKS Indranil Ghosh, Table of n, a(n) for n = 0..497 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (102, -1). FORMULA a(n) = 102*a(n-1) - a(n-2), n>=1; a(-1):= 51, a(0)=1. a(n) = T(n, 51) = (S(n, 102)-S(n-2, 102))/2 = S(n, 102)-51*S(n-1, 102) with T(n, x), resp. S(n, x), Chebyshev's polynomials of the first, resp.second, kind. See A053120 and A049310. S(n, 102)=(n). a(n) = (ap^n + am^n)/2 with ap := 51+10*sqrt(26) and am := 51-10*sqrt(26). a(n) = sum(((-1)^k)*(n/(2*(n-k)))*binomial(n-k, k)*(2*51)^(n-2*k), k=0..floor(n/2)), n>=1. a(0):=1. G.f.: (1-51*x)/(1-102*x+x^2). MATHEMATICA LinearRecurrence[{102, -1}, {1, 51}, 13] (* Ray Chandler, Aug 11 2015 *) PROG (MAGMA) [n: n in [1..1000] |IsSquare(26*(n^2-1))] // Vincenzo Librandi, Nov 17 2010 CROSSREFS Row 5 of array A188645. Sequence in context: A172868 A015271 A221116 * A093251 A184282 A232278 Adjacent sequences:  A099394 A099395 A099396 * A099398 A099399 A099400 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Oct 18 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 20 22:26 EDT 2017. Contains 290837 sequences.