OFFSET
0,8
LINKS
Seiichi Manyama, Antidiagonals n = 0..139, flattened
Wikipedia, Chebyshev polynomials.
FORMULA
A(0,k) = 1, A(1,k) = k and A(n,k) = 2 * k * A(n-1,k) - A(n-2,k) for n > 1.
A(n,k) = cos(n*arccos(k)). - Seiichi Manyama, Mar 05 2021
A(n,k) = n * Sum_{j=0..n} (2*k-2)^j * binomial(n+j,2*j)/(n+j) for n > 0. - Seiichi Manyama, Mar 05 2021
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
-1, 1, 7, 17, 31, 49, 71, ...
0, 1, 26, 99, 244, 485, 846, ...
1, 1, 97, 577, 1921, 4801, 10081, ...
0, 1, 362, 3363, 15124, 47525, 120126, ...
-1, 1, 1351, 19601, 119071, 470449, 1431431, ...
MATHEMATICA
Table[ChebyshevT[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Dec 28 2018 *)
PROG
(PARI) T(n, k) = polchebyshev(n, 1, k);
matrix(7, 7, n, k, T(n-1, k-1)) \\ Michel Marcus, Dec 28 2018
(PARI) T(n, k) = round(cos(n*acos(k))); \\ Seiichi Manyama, Mar 05 2021
(PARI) T(n, k) = if(n==0, 1, n*sum(j=0, n, (2*k-2)^j*binomial(n+j, 2*j)/(n+j))); \\ Seiichi Manyama, Mar 05 2021
CROSSREFS
Mirror of A101124.
Columns 0-20 give A056594, A000012, A001075, A001541, A001091, A001079, A023038, A011943(n+1), A001081, A023039, A001085, A077422, A077424, A097308, A097310, A068203, A322888, A056771, A322889, A078986, A322890.
Rows 0-10 give A000012, A001477, A056220, A144129, A144130, A243131, A243132, A243133, A243134, A243135, A243136.
Main diagonal gives A115066.
Cf. A323182 (Chebyshev polynomial of the second kind).
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Dec 28 2018
STATUS
approved