login
A011941
a(n) = floor(n*(n-1)*(n-2)*(n-3)/31).
2
0, 0, 0, 0, 0, 3, 11, 27, 54, 97, 162, 255, 383, 553, 774, 1056, 1409, 1842, 2369, 3000, 3750, 4633, 5663, 6855, 8226, 9793, 11574, 13587, 15851, 18387, 21216, 24360, 27840, 31680, 35904, 40536, 45603, 51131, 57147, 63678, 70753, 78402, 86655, 95543
OFFSET
0,6
LINKS
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-4,6,-4,1).
FORMULA
G.f.: (3-x+x^2+2*x^4+x^5+x^7+2*x^9+x^10-x^12+5*x^13-4*x^14+5*x^15-x^16+x^18 +2*x^19+x^21+x^23+2*x^24+x^26-x^27+3*x^28)*x^5/((1-x)^4*(1-x^31)). - Robert Israel, Feb 12 2017
MAPLE
f:= n -> floor(n*(n-1)*(n-2)*(n-3)/31):
map(f, [$0..100]); # Robert Israel, Feb 12 2017
MATHEMATICA
Floor[24*Binomial[Range[0, 60], 4]/31] (* G. C. Greubel, Oct 26 2024 *)
PROG
(PARI) a(n) = n*(n-1)*(n-2)*(n-3)\31; \\ Altug Alkan, Feb 12 2017
(Magma) [Floor(24*Binomial(n, 4)/31): n in [0..60]]; // G. C. Greubel, Oct 26 2024
(SageMath) [24*binomial(n, 4)//31 for n in range(61)] # G. C. Greubel, Oct 26 2024
CROSSREFS
Cf. A011915.
Sequence in context: A212982 A164845 A024194 * A374337 A219621 A033960
KEYWORD
nonn,easy
STATUS
approved