login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A011938
a(n) = floor( n*(n-1)*(n-2)*(n-3)/28 ).
2
0, 0, 0, 0, 0, 4, 12, 30, 60, 108, 180, 282, 424, 612, 858, 1170, 1560, 2040, 2622, 3322, 4152, 5130, 6270, 7590, 9108, 10842, 12814, 15042, 17550, 20358, 23490, 26970, 30822, 35074, 39750, 44880, 50490, 56610, 63270, 70500, 78334, 86802, 95940, 105780
OFFSET
0,6
FORMULA
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + a(n-7) - 4*a(n-8) + 6*a(n-9) - 4*a(n-10) + a(n-11). - Chai Wah Wu, May 25 2016
G.f.: 2*x^5*(2-2*x+3*x^2-2*x^3+2*x^4) / ((1-x)^5*(1+x+x^2+x^3+x^4+x^5+x^6)). - Colin Barker, May 25 2016
MATHEMATICA
Table[Floor[n (n-1)(n-2)(n-3)/28], {n, 0, 50}] (* Vincenzo Librandi, May 27 2016 *)
LinearRecurrence[{4, -6, 4, -1, 0, 0, 1, -4, 6, -4, 1}, {0, 0, 0, 0, 0, 4, 12, 30, 60, 108, 180}, 50] (* Harvey P. Dale, Aug 10 2024 *)
PROG
(PARI) concat(vector(5), Vec(2*x^5*(2-2*x+3*x^2-2*x^3+2*x^4)/((1-x)^5*(1+x+x^2+x^3+x^4+x^5+x^6)) + O(x^50))) \\ Colin Barker, May 25 2016
(Magma) [Floor(n*(n-1)*(n-2)*(n-3)/28): n in [0..50]]; // Vincenzo Librandi, May 27 2016
(SageMath) [6*binomial(n, 4)//7 for n in range(61)] # G. C. Greubel, Oct 27 2024
CROSSREFS
Cf. A011915.
Sequence in context: A067706 A008261 A099407 * A047177 A048077 A350424
KEYWORD
nonn,easy
STATUS
approved