login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A011939
a(n) = floor( n*(n-1)*(n-2)*(n-3)/29 ).
2
0, 0, 0, 0, 0, 4, 12, 28, 57, 104, 173, 273, 409, 591, 828, 1129, 1506, 1969, 2532, 3207, 4009, 4953, 6053, 7328, 8793, 10468, 12372, 14524, 16944, 19656, 22680, 26040, 29760, 33864, 38380, 43332, 48748, 54657, 61088, 68069, 75633, 83809, 92631, 102132, 112345, 123306, 135049, 147612, 161031, 175345
OFFSET
0,6
LINKS
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-4,6,-4,1).
FORMULA
From Chai Wah Wu, Aug 02 2020: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + a(n-29) - 4*a(n-30) + 6*a(n-31) - 4*a(n-32) + a(n-33) for n > 32.
G.f.: x^5*(4 -4*x +4*x^2 +x^3 -x^5 +5*x^6 -4*x^7 +5*x^8 -x^9 +3*x^11 -2*x^12 +4*x^13 -2*x^14 +3*x^15 -x^17 +5*x^18 -4*x^19 +5*x^20 -x^21 +x^23 +4*x^24 -4*x^25 +4*x^26)/((1-x)^4*(1-x^29)). (End)
MATHEMATICA
Table[Floor[Times@@(n-Range[0, 3])/29], {n, 0, 60}] (* or *) LinearRecurrence[{4, -6, 4, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -4, 6, -4, 1}, {0, 0, 0, 0, 0, 4, 12, 28, 57, 104, 173, 273, 409, 591, 828, 1129, 1506, 1969, 2532, 3207, 4009, 4953, 6053, 7328, 8793, 10468, 12372, 14524, 16944, 19656, 22680, 26040, 29760}, 60] (* Harvey P. Dale, Jun 09 2024 *)
Floor[24*Binomial[Range[0, 60], 4]/29] (* G. C. Greubel, Oct 27 2024 *)
PROG
(PARI) a(n)=n*(n-1)*(n-2)*(n-3)\29 \\ Charles R Greathouse IV, Oct 18 2022
(Magma) [Floor(24*Binomial(n, 4)/29): n in [0..60]]; // G. C. Greubel, Oct 27 2024
(SageMath) [24*binomial(n, 4)//29 for n in range(61)] # G. C. Greubel, Oct 27 2024
CROSSREFS
Cf. A011915.
Sequence in context: A223764 A102653 A102650 * A203286 A028346 A356728
KEYWORD
nonn,easy
EXTENSIONS
More terms added by G. C. Greubel, Oct 27 2024
STATUS
approved