login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374337
Start with two vertices and draw a circle around each whose radius is the distance between the vertices. The sequence gives the number of regions constructed after n iterations of drawing circles with this same radius around every new vertex created from all circles' intersections.
4
3, 11, 27, 55, 99, 145, 203, 277, 353, 441, 545, 651, 769, 903, 1039, 1187, 1351, 1517, 1695, 1889, 2085, 2293, 2517, 2743, 2981, 3235, 3491, 3759, 4043, 4329, 4627, 4941, 5257, 5585, 5929, 6275, 6633, 7007, 7383, 7771, 8175, 8581, 8999, 9433, 9869, 10317, 10781, 11247, 11725, 12219, 12715
OFFSET
1,1
COMMENTS
See A374338 for further details.
LINKS
Scott R. Shannon, Image for n = 1. In this and other images the initial vertices that form the circles' centers are shown as white dots.
Scott R. Shannon, Image for n = 2.
Scott R. Shannon, Image for n = 3.
Scott R. Shannon, Image for n = 4.
Scott R. Shannon, Image for n = 16.
FORMULA
a(n) = A374339(n) - A374338(n) + 1, by Euler's formula.
Conjectured:
If n = 3*k + 1, k >= 0, a(n) = |(15*n^2 - 17*n - 7)/3|.
If n = 3*k, k >= 1, a(n) = (15*n^2 - 17*n - 3)/3.
If n = 3*k - 1, k >= 1, a(n) = (15*n^2 - 17*n + 7)/3.
CROSSREFS
Cf. A374338 (vertices), A374339 (edges), A359570, A371374, A371253.
Sequence in context: A164845 A024194 A011941 * A219621 A033960 A147173
KEYWORD
nonn
AUTHOR
Scott R. Shannon, Jul 05 2024
STATUS
approved