login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046650
Number of rooted planar maps.
1
1, 1, 2, 4, 14, 49, 216, 984, 4862, 24739, 130338, 701584, 3852744, 21489836, 121525520, 695307888, 4019381790, 23446201495, 137875564710, 816646459860, 4868578092510, 29196022525905, 176022392938080, 1066433501134560, 6490009570139784, 39659537885087124, 243278423033093336, 1497584057249141728, 9249144367260811824
OFFSET
2,3
COMMENTS
From R. J. Mathar, Apr 13 2019: (Start)
Table III with row sums A000087 is (A046653 row-reversed):
1;
1, 1;
2, 1, 1;
4, 3, 2, 1;
14, 12, 8, 2, 1;
49, 43, 30, 12, 3, 1;
216, 189, 134, 63, 22, 3, 1;
984, 888, 608, 323, 133, 31, 4, 1;
4862, 4332, 2988, 1671, 759, 238, 48, 4, 1;
...
(End)
LINKS
W. G. Brown, Enumeration of non-separable planar maps, Canad. J. Math., 15 (1963), 526-545.
FORMULA
Reference gives generating functions.
MAPLE
B1nm := proc(n, m) # eq (4.15)
local j ;
if m>=2 and n>= m then
add((3*m-2*j-1)*(2*j-m)*(j-2)!*(3*n-j-m-1)!/(n-j)!/(j-m)!/(j-m+1)!/(2*m-j)!, j=m..min(n, 2*m) ) ;
%*m/(2*n-m)! ;
else
0 ;
end if;
end proc:
B2wj := proc(w, j) # eq (8.21)
local k ;
if w >= j and j>=1 and w >= 1 then
add((2*k-j+1)*(k-1)!*(3*w-k-j)!/(k-j+1)!/(k-j)!/(2*j-k-1)!/(w-k)!, k=j..min(w, 2*j-1) ) ;
%*j/(2*w-j+1)! ;
else
0;
end if;
end proc:
Brwj := proc(r, w, j) # eq. (8.21)
local k ;
if w >= j and j>=1 and w>=1 and r > 1 then
add((2*k-j)*(k-1)!*(3*w-k-j-1)!/((k-j)!)^2/(2*j-k)!/(w-k)!, k=j..min(w, 2*j) ) ;
%*j/(2*w-j)! ;
else
0 ;
end if;
end proc:
Brnm := proc(r, n, m)
if r = 1 then
B1nm(n, m) ;
elif r = 2 and type(n, 'odd') and type (m, 'even') then
B2wj((n-1)/2, m/2) ;
elif modp(n, r) <> 0 or modp(m, r) <> 0 then
0;
else
Brwj(r, n/r, m/r) ;
end if;
end proc:
L := proc(n, m) # eq. (6.7)
add(numtheory[phi](s)*Brnm(s, n, m), s=numtheory[divisors](m)) ;
%/m ;
end proc:
seq(L(n, 2), n=2..40) ; # R. J. Mathar, Apr 13 2019
MATHEMATICA
B1nm[n_, m_] := If[m >= 2 && n >= m, Sum[(3m - 2j - 1)(2j - m)(j - 2)! (3n - j - m - 1)!/(n - j)!/(j - m)!/(j - m + 1)!/(2m - j)!, {j, m, Min[n, 2m] }] m/(2n - m)!, 0];
B2wj[w_, j_] := If[w >= j && j >= 1 && w >= 1, Sum[(2k - j + 1)(k - 1)! (3 w - k - j)!/(k - j + 1)!/(k - j)!/(2j - k - 1)!/(w - k)!, {k, j, Min[w, 2 j - 1] }] j/(2w - j + 1)!, 0];
Brwj[r_, w_, j_] := If[w >= j && j >= 1 && w >= 1 && r > 1 , Sum[(2k - j)(k - 1)! (3w - k - j - 1)!/((k - j)!)^2/(2j - k)!/(w - k)!, {k, j, Min[w, 2j]}] j/(2w - j)!, 0];
Brnm[r_, n_, m_] := Which[r == 1, B1nm[n, m], r == 2 && OddQ[n] && EvenQ[m], B2wj[(n - 1)/2, m/2], Mod[n, r] != 0 || Mod[m, r] != 0, 0, True, Brwj[r, n/r, m/r]];
L[n_, m_] := Sum[EulerPhi[s] Brnm[s, n, m], {s, Divisors[m]}]/m;
Table[L[n, 2], {n, 2, 30}] // Flatten (* Jean-François Alcover, Apr 05 2020, after R. J. Mathar *)
CROSSREFS
Cf. A000087.
Sequence in context: A032222 A212268 A092665 * A327235 A055727 A003500
KEYWORD
nonn,easy
EXTENSIONS
More terms from R. J. Mathar, Apr 13 2019
STATUS
approved