OFFSET
2,3
COMMENTS
From R. J. Mathar, Apr 13 2019: (Start)
1;
1, 1;
2, 1, 1;
4, 3, 2, 1;
14, 12, 8, 2, 1;
49, 43, 30, 12, 3, 1;
216, 189, 134, 63, 22, 3, 1;
984, 888, 608, 323, 133, 31, 4, 1;
4862, 4332, 2988, 1671, 759, 238, 48, 4, 1;
...
(End)
LINKS
W. G. Brown, Enumeration of non-separable planar maps, Canad. J. Math., 15 (1963), 526-545.
FORMULA
Reference gives generating functions.
MAPLE
B1nm := proc(n, m) # eq (4.15)
local j ;
if m>=2 and n>= m then
add((3*m-2*j-1)*(2*j-m)*(j-2)!*(3*n-j-m-1)!/(n-j)!/(j-m)!/(j-m+1)!/(2*m-j)!, j=m..min(n, 2*m) ) ;
%*m/(2*n-m)! ;
else
0 ;
end if;
end proc:
B2wj := proc(w, j) # eq (8.21)
local k ;
if w >= j and j>=1 and w >= 1 then
add((2*k-j+1)*(k-1)!*(3*w-k-j)!/(k-j+1)!/(k-j)!/(2*j-k-1)!/(w-k)!, k=j..min(w, 2*j-1) ) ;
%*j/(2*w-j+1)! ;
else
0;
end if;
end proc:
Brwj := proc(r, w, j) # eq. (8.21)
local k ;
if w >= j and j>=1 and w>=1 and r > 1 then
add((2*k-j)*(k-1)!*(3*w-k-j-1)!/((k-j)!)^2/(2*j-k)!/(w-k)!, k=j..min(w, 2*j) ) ;
%*j/(2*w-j)! ;
else
0 ;
end if;
end proc:
Brnm := proc(r, n, m)
if r = 1 then
B1nm(n, m) ;
elif r = 2 and type(n, 'odd') and type (m, 'even') then
B2wj((n-1)/2, m/2) ;
elif modp(n, r) <> 0 or modp(m, r) <> 0 then
0;
else
Brwj(r, n/r, m/r) ;
end if;
end proc:
L := proc(n, m) # eq. (6.7)
add(numtheory[phi](s)*Brnm(s, n, m), s=numtheory[divisors](m)) ;
%/m ;
end proc:
seq(L(n, 2), n=2..40) ; # R. J. Mathar, Apr 13 2019
MATHEMATICA
B1nm[n_, m_] := If[m >= 2 && n >= m, Sum[(3m - 2j - 1)(2j - m)(j - 2)! (3n - j - m - 1)!/(n - j)!/(j - m)!/(j - m + 1)!/(2m - j)!, {j, m, Min[n, 2m] }] m/(2n - m)!, 0];
B2wj[w_, j_] := If[w >= j && j >= 1 && w >= 1, Sum[(2k - j + 1)(k - 1)! (3 w - k - j)!/(k - j + 1)!/(k - j)!/(2j - k - 1)!/(w - k)!, {k, j, Min[w, 2 j - 1] }] j/(2w - j + 1)!, 0];
Brwj[r_, w_, j_] := If[w >= j && j >= 1 && w >= 1 && r > 1 , Sum[(2k - j)(k - 1)! (3w - k - j - 1)!/((k - j)!)^2/(2j - k)!/(w - k)!, {k, j, Min[w, 2j]}] j/(2w - j)!, 0];
Brnm[r_, n_, m_] := Which[r == 1, B1nm[n, m], r == 2 && OddQ[n] && EvenQ[m], B2wj[(n - 1)/2, m/2], Mod[n, r] != 0 || Mod[m, r] != 0, 0, True, Brwj[r, n/r, m/r]];
L[n_, m_] := Sum[EulerPhi[s] Brnm[s, n, m], {s, Divisors[m]}]/m;
Table[L[n, 2], {n, 2, 30}] // Flatten (* Jean-François Alcover, Apr 05 2020, after R. J. Mathar *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from R. J. Mathar, Apr 13 2019
STATUS
approved