login
Number of rooted planar maps.
1

%I #19 Apr 05 2020 04:58:29

%S 1,1,2,4,14,49,216,984,4862,24739,130338,701584,3852744,21489836,

%T 121525520,695307888,4019381790,23446201495,137875564710,816646459860,

%U 4868578092510,29196022525905,176022392938080,1066433501134560,6490009570139784,39659537885087124,243278423033093336,1497584057249141728,9249144367260811824

%N Number of rooted planar maps.

%C From _R. J. Mathar_, Apr 13 2019: (Start)

%C Table III with row sums A000087 is (A046653 row-reversed):

%C 1;

%C 1, 1;

%C 2, 1, 1;

%C 4, 3, 2, 1;

%C 14, 12, 8, 2, 1;

%C 49, 43, 30, 12, 3, 1;

%C 216, 189, 134, 63, 22, 3, 1;

%C 984, 888, 608, 323, 133, 31, 4, 1;

%C 4862, 4332, 2988, 1671, 759, 238, 48, 4, 1;

%C ...

%C (End)

%H W. G. Brown, <a href="http://dx.doi.org/10.4153/CJM-1963-056-7">Enumeration of non-separable planar maps</a>, Canad. J. Math., 15 (1963), 526-545.

%F Reference gives generating functions.

%p B1nm := proc(n,m) # eq (4.15)

%p local j ;

%p if m>=2 and n>= m then

%p add((3*m-2*j-1)*(2*j-m)*(j-2)!*(3*n-j-m-1)!/(n-j)!/(j-m)!/(j-m+1)!/(2*m-j)!,j=m..min(n,2*m) ) ;

%p %*m/(2*n-m)! ;

%p else

%p 0 ;

%p end if;

%p end proc:

%p B2wj := proc(w,j) # eq (8.21)

%p local k ;

%p if w >= j and j>=1 and w >= 1 then

%p add((2*k-j+1)*(k-1)!*(3*w-k-j)!/(k-j+1)!/(k-j)!/(2*j-k-1)!/(w-k)!,k=j..min(w,2*j-1) ) ;

%p %*j/(2*w-j+1)! ;

%p else

%p 0;

%p end if;

%p end proc:

%p Brwj := proc(r,w,j) # eq. (8.21)

%p local k ;

%p if w >= j and j>=1 and w>=1 and r > 1 then

%p add((2*k-j)*(k-1)!*(3*w-k-j-1)!/((k-j)!)^2/(2*j-k)!/(w-k)!,k=j..min(w,2*j) ) ;

%p %*j/(2*w-j)! ;

%p else

%p 0 ;

%p end if;

%p end proc:

%p Brnm := proc(r,n,m)

%p if r = 1 then

%p B1nm(n,m) ;

%p elif r = 2 and type(n,'odd') and type (m,'even') then

%p B2wj((n-1)/2,m/2) ;

%p elif modp(n,r) <> 0 or modp(m,r) <> 0 then

%p 0;

%p else

%p Brwj(r,n/r,m/r) ;

%p end if;

%p end proc:

%p L := proc(n,m) # eq. (6.7)

%p add(numtheory[phi](s)*Brnm(s,n,m),s=numtheory[divisors](m)) ;

%p %/m ;

%p end proc:

%p seq(L(n,2),n=2..40) ; # _R. J. Mathar_, Apr 13 2019

%t B1nm[n_, m_] := If[m >= 2 && n >= m, Sum[(3m - 2j - 1)(2j - m)(j - 2)! (3n - j - m - 1)!/(n - j)!/(j - m)!/(j - m + 1)!/(2m - j)!, {j, m, Min[n, 2m] }] m/(2n - m)!, 0];

%t B2wj[w_, j_] := If[w >= j && j >= 1 && w >= 1, Sum[(2k - j + 1)(k - 1)! (3 w - k - j)!/(k - j + 1)!/(k - j)!/(2j - k - 1)!/(w - k)!, {k, j, Min[w, 2 j - 1] }] j/(2w - j + 1)!, 0];

%t Brwj[r_, w_, j_] := If[w >= j && j >= 1 && w >= 1 && r > 1 , Sum[(2k - j)(k - 1)! (3w - k - j - 1)!/((k - j)!)^2/(2j - k)!/(w - k)!, {k, j, Min[w, 2j]}] j/(2w - j)!, 0];

%t Brnm[r_, n_, m_] := Which[r == 1, B1nm[n, m], r == 2 && OddQ[n] && EvenQ[m], B2wj[(n - 1)/2, m/2], Mod[n, r] != 0 || Mod[m, r] != 0, 0, True, Brwj[r, n/r, m/r]];

%t L[n_, m_] := Sum[EulerPhi[s] Brnm[s, n, m], {s, Divisors[m]}]/m;

%t Table[L[n, 2], {n, 2, 30}] // Flatten (* _Jean-François Alcover_, Apr 05 2020, after _R. J. Mathar_ *)

%Y Cf. A000087.

%K nonn,easy

%O 2,3

%A _N. J. A. Sloane_

%E More terms from _R. J. Mathar_, Apr 13 2019