login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of rooted planar maps.
1

%I #19 Apr 05 2020 04:58:29

%S 1,1,2,4,14,49,216,984,4862,24739,130338,701584,3852744,21489836,

%T 121525520,695307888,4019381790,23446201495,137875564710,816646459860,

%U 4868578092510,29196022525905,176022392938080,1066433501134560,6490009570139784,39659537885087124,243278423033093336,1497584057249141728,9249144367260811824

%N Number of rooted planar maps.

%C From _R. J. Mathar_, Apr 13 2019: (Start)

%C Table III with row sums A000087 is (A046653 row-reversed):

%C 1;

%C 1, 1;

%C 2, 1, 1;

%C 4, 3, 2, 1;

%C 14, 12, 8, 2, 1;

%C 49, 43, 30, 12, 3, 1;

%C 216, 189, 134, 63, 22, 3, 1;

%C 984, 888, 608, 323, 133, 31, 4, 1;

%C 4862, 4332, 2988, 1671, 759, 238, 48, 4, 1;

%C ...

%C (End)

%H W. G. Brown, <a href="http://dx.doi.org/10.4153/CJM-1963-056-7">Enumeration of non-separable planar maps</a>, Canad. J. Math., 15 (1963), 526-545.

%F Reference gives generating functions.

%p B1nm := proc(n,m) # eq (4.15)

%p local j ;

%p if m>=2 and n>= m then

%p add((3*m-2*j-1)*(2*j-m)*(j-2)!*(3*n-j-m-1)!/(n-j)!/(j-m)!/(j-m+1)!/(2*m-j)!,j=m..min(n,2*m) ) ;

%p %*m/(2*n-m)! ;

%p else

%p 0 ;

%p end if;

%p end proc:

%p B2wj := proc(w,j) # eq (8.21)

%p local k ;

%p if w >= j and j>=1 and w >= 1 then

%p add((2*k-j+1)*(k-1)!*(3*w-k-j)!/(k-j+1)!/(k-j)!/(2*j-k-1)!/(w-k)!,k=j..min(w,2*j-1) ) ;

%p %*j/(2*w-j+1)! ;

%p else

%p 0;

%p end if;

%p end proc:

%p Brwj := proc(r,w,j) # eq. (8.21)

%p local k ;

%p if w >= j and j>=1 and w>=1 and r > 1 then

%p add((2*k-j)*(k-1)!*(3*w-k-j-1)!/((k-j)!)^2/(2*j-k)!/(w-k)!,k=j..min(w,2*j) ) ;

%p %*j/(2*w-j)! ;

%p else

%p 0 ;

%p end if;

%p end proc:

%p Brnm := proc(r,n,m)

%p if r = 1 then

%p B1nm(n,m) ;

%p elif r = 2 and type(n,'odd') and type (m,'even') then

%p B2wj((n-1)/2,m/2) ;

%p elif modp(n,r) <> 0 or modp(m,r) <> 0 then

%p 0;

%p else

%p Brwj(r,n/r,m/r) ;

%p end if;

%p end proc:

%p L := proc(n,m) # eq. (6.7)

%p add(numtheory[phi](s)*Brnm(s,n,m),s=numtheory[divisors](m)) ;

%p %/m ;

%p end proc:

%p seq(L(n,2),n=2..40) ; # _R. J. Mathar_, Apr 13 2019

%t B1nm[n_, m_] := If[m >= 2 && n >= m, Sum[(3m - 2j - 1)(2j - m)(j - 2)! (3n - j - m - 1)!/(n - j)!/(j - m)!/(j - m + 1)!/(2m - j)!, {j, m, Min[n, 2m] }] m/(2n - m)!, 0];

%t B2wj[w_, j_] := If[w >= j && j >= 1 && w >= 1, Sum[(2k - j + 1)(k - 1)! (3 w - k - j)!/(k - j + 1)!/(k - j)!/(2j - k - 1)!/(w - k)!, {k, j, Min[w, 2 j - 1] }] j/(2w - j + 1)!, 0];

%t Brwj[r_, w_, j_] := If[w >= j && j >= 1 && w >= 1 && r > 1 , Sum[(2k - j)(k - 1)! (3w - k - j - 1)!/((k - j)!)^2/(2j - k)!/(w - k)!, {k, j, Min[w, 2j]}] j/(2w - j)!, 0];

%t Brnm[r_, n_, m_] := Which[r == 1, B1nm[n, m], r == 2 && OddQ[n] && EvenQ[m], B2wj[(n - 1)/2, m/2], Mod[n, r] != 0 || Mod[m, r] != 0, 0, True, Brwj[r, n/r, m/r]];

%t L[n_, m_] := Sum[EulerPhi[s] Brnm[s, n, m], {s, Divisors[m]}]/m;

%t Table[L[n, 2], {n, 2, 30}] // Flatten (* _Jean-François Alcover_, Apr 05 2020, after _R. J. Mathar_ *)

%Y Cf. A000087.

%K nonn,easy

%O 2,3

%A _N. J. A. Sloane_

%E More terms from _R. J. Mathar_, Apr 13 2019