login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135829 a(n) = F(n)*a(n-1) + a(n-2) with a(0) = 0, a(1) = 1. 4
0, 1, 1, 3, 10, 53, 434, 5695, 120029, 4086681, 224887484, 20019072757, 2882971364492, 671752346999393, 253253517790135653, 154485317604329747723, 152477261728991251138254, 243506341466516632397539361, 629220538826740707106492847078 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Essentially the same as A071895. [R. J. Mathar, Oct 28 2008]

From Michel Lagneau, Apr 12 2010: (Start)

Determinant of n+1 X n+1 matrix: ((F(0),-1,0,...,0),(1,F(1),-1,0,...,0),(0,1,F(2),-1,0,...,0),...,(0,0,...,1,F(n)). Each determinant is the numerator of the fraction x(n)/y(n) equal to the continued fraction expansion of the diagonal elements [F(0), F(1), ..., F(n)] of the n+1 X n+1 matrix. The value x(n) is obtained by computing the determinant det(n+1 X n+1) from the last column. The value y(n) is obtained by computing this determinant after removal of the first row and the first column (see example below).

The sequence A001040 give the values of each determinant with numerator of continued fraction given by the expansion of the diagonal elements [n,n-1,...,3,2,1]. The same is true for the sequence A084845 with the expansion of the diagonal elements [n,n,...,n], and the sequence A036246 for the elements[ 0, 1, 4, ..., n^2 ].

Examples:

for n = 0, det[0] = 0; for n = 1, det(([[0,-1],[1,1]]) = 1;

for n = 2, det([[0,-1, 0],[1,1,-1],[0,1,1]]))=1;

for n = 3, det([[0,-1, 0,0],[1,1,-1,0],[0,1,1,-1],[0,0,1,2]])) = 3, and the continued fraction expansion is 3/det(([[1,-1, 0],[1,1,-1],[0,1,2]])) = 5/3 = 0 + 1 + 1/(1 + 1/2) => [0,1,1,2]. (End)

a(n) is the denominator of the continued fraction [F(1), F(2), ..., F(n)] for n > 0. - Seung Ju Lee, Aug 23 2020

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..98

FORMULA

a(n) = (-a(n-1)*a(n-4)*a(n-2) - a(n-1)*a(n-3)^2 + a(n-1)^2*a(n-3) + a(n-2)^2*a(n-3) + a(n-1)*a(n-2)^2)/(a(n-2)*a(n-3)). - Robert Israel, Dec 04 2016

a(n) ~ c * ((1 + sqrt(5))/2)^(n*(n+1)/2) / 5^(n/2), where c = 2.25240516839867905756631574518868900987391688308922490621152619277084562178... - Vaclav Kotesovec, Dec 29 2019

EXAMPLE

a(5) = 53 = F(5)*a(4) + a(3) = 5*10 + 3.

MAPLE

a:= proc(n) option remember; `if`(n<2, n,

      combinat[fibonacci](n)*a(n-1)+a(n-2))

    end:

seq(a(n), n=0..20);  # Alois P. Heinz, Jan 24 2021

MATHEMATICA

RecurrenceTable[{a[0]==0, a[1]==1, a[n]==Fibonacci[n]*a[n-1]+a[n-2]}, a, {n, 0, 20}] (* Harvey P. Dale, Apr 26 2012 *)

CROSSREFS

Cf. A000045.

Cf. A176232, A176233, A001040, A084845, A036246, A036245, A330638.

Sequence in context: A143599 A264409 A199202 * A071895 A054422 A074503

Adjacent sequences:  A135826 A135827 A135828 * A135830 A135831 A135832

KEYWORD

nonn,easy

AUTHOR

Gary W. Adamson, Nov 29 2007

EXTENSIONS

More terms from Michel Lagneau, Apr 12 2010

Offset changed by N. J. A. Sloane, Apr 21 2010

Replaced n with n+1 where needed. - Seung Ju Lee, Aug 30 2020

Incorrect program removed by Alois P. Heinz, Jan 24 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 4 16:41 EDT 2022. Contains 357239 sequences. (Running on oeis4.)