OFFSET
1,2
COMMENTS
Conjecture: a(n) is not a perfect square except for n = 1, 6 and 96.
LINKS
Stefano Spezia, Table of n, a(n) for n = 1..10000
FORMULA
MAPLE
a := n -> sum((n+1-k)^2*k/gcd(n+1-k, k)^3, k = 1 .. n): seq(a(n), n = 1 .. 50);
MATHEMATICA
a[n_]:=Sum[(n+1-k)^2*k/GCD[n+1-k, k]^3, {k, 1, n}]; Array[a, 50]
PROG
(GAP) List([1..50], n->Sum([1..n], k->(n+1-k)^2*k/GcdInt(n+1-k, k)^3));
(Magma) [(&+[(n+1-k)^2*k/Gcd(n+1-k, k)^3: k in [1..n]]): n in [1..50]];
(Maxima) a(n):=sum((n+1-k)^2*k/gcd(n+1-k, k)^3, k, 1, n)$ makelist(a(n), n, 1, 50);
(PARI)
a(n) = sum(k=1, n, (n+1-k)^2*k/gcd(n+1-k, k)^3);
vector(50, n, a(n))
CROSSREFS
KEYWORD
nonn
AUTHOR
Stefano Spezia, Dec 16 2018
STATUS
approved