login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179432
a(n) = C(2*3^(n-1), n).
4
1, 2, 15, 816, 316251, 873642672, 17743125256857, 2739097835911193328, 3301626910467952067341626, 31698997711344336177849363574320, 2460103385023594223069956382123378560008
OFFSET
0,2
COMMENTS
Equals column 0 in the matrix square of triangle T=A179430 where column 0 of T^m equals C(m*3^(n-1), n) at row n for n>=0, m>=0.
FORMULA
G.f.: A(x) = Sum_{n>=0} (2/3)^n * log(1 + 3^n*x)^n / n!.
a(n) ~ 2^n * 3^(n*(n-1)) / n!. - Vaclav Kotesovec, Jul 02 2016
EXAMPLE
G.f.: A(x) = 1 + 2*x + 15*x^2 + 816*x^3 + 316251*x^4 +...
A(x) = 1 + 2*log(1+3*x)/3 + 2^2*log(1+3^2*x)^2/(3^2*2!) + 2^3*log(1+3^3*x)^3/(3^3*3!) + 2^4*log(1+3^4*x)^4/(3^4*4!) +...
MATHEMATICA
Table[Binomial[2*3^(n-1), n], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *)
PROG
(PARI) {a(n)=binomial(2*3^(n-1), n)}
(PARI) /* G.f. A(x) as Sum of Series: */
{a(n)=polcoeff(sum(k=0, n, (2/3)^k*log(1+3^k*x +x*O(x^n))^k/k!), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 20 2010
STATUS
approved