OFFSET
1,2
COMMENTS
Also number of commutative partial groupoids with n-1 elements or commutative groupoids with an absorbant (zero) element with n elements.
LINKS
Eric Postpischil Posting to sci.math newsgroup, May 21 1990
Eric Weisstein's World of Mathematics, Groupoid.
FORMULA
a(n+1) = sum {1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = prod {i>=j>=1} f(i, j, s_i, s_j) where f(i, j, s_i, s_j) = {i=j, odd} (1 + sum {d|i} (d*s_d))^((i*s_i^2+s_i)/2) or {i=j, even} (1 + sum {d|i} (d*s_d))^(i*s_i^2/2) * (1 + sum {d|i/2} (d*s_d))^s_i or {i != j} (1 + sum {d|lcm(i, j)} (d*s_d))^(2*gcd(i, j)*s_i*s_j)
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, May 15 1998; revised Dec 05 2003
STATUS
approved