login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038017
Number of n-element commutative groupoids with an identity ("pointed" groupoids).
2
1, 2, 15, 720, 409600, 3920030472, 775775333825891, 3837862827737186253664, 558740081065710564284870598075, 2755731923933734753149997221152548428020, 520996314135332606285488148844494695722050333912483
OFFSET
1,2
COMMENTS
Also number of commutative partial groupoids with n-1 elements or commutative groupoids with an absorbant (zero) element with n elements.
FORMULA
a(n+1) = sum {1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = prod {i>=j>=1} f(i, j, s_i, s_j) where f(i, j, s_i, s_j) = {i=j, odd} (1 + sum {d|i} (d*s_d))^((i*s_i^2+s_i)/2) or {i=j, even} (1 + sum {d|i} (d*s_d))^(i*s_i^2/2) * (1 + sum {d|i/2} (d*s_d))^s_i or {i != j} (1 + sum {d|lcm(i, j)} (d*s_d))^(2*gcd(i, j)*s_i*s_j)
a(n) asymptotic to (n^binomial(n, 2)+1)/n! = A090599(n)/A000142(n) = A076113(n)/A000142(n-1)
CROSSREFS
Sequence in context: A013064 A013095 A208051 * A012993 A216331 A179432
KEYWORD
nonn
AUTHOR
Christian G. Bower, May 15 1998; revised Dec 05 2003
STATUS
approved