Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #58 Mar 01 2024 09:59:32
%S 0,0,1,4,14,44,131,376,1052,2888,7813,20892,55338,145428,379655,
%T 985520,2545720,6547792,16777993,42847988,109099078,277040572,
%U 701794187,1773851304,4474555476,11266301976,28318897549,71070913036,178106093666,445740656420,1114147888655
%N Self-convolution of Pell numbers (A000129).
%D R. P. Grimaldi, Ternary strings with no consecutive 0's and no consecutive 1's, Congressus Numerantium, 205 (2011), 129-149. (The sequences w_n and z_n)
%H Michael De Vlieger, <a href="/A006645/b006645.txt">Table of n, a(n) for n = 0..2605</a>
%H Jean-Luc Baril and José Luis Ramírez, <a href="https://arxiv.org/abs/2302.12741">Descent distribution on Catalan words avoiding ordered pairs of Relations</a>, arXiv:2302.12741 [math.CO], 2023.
%H Sergio Falcon, <a href="https://doi.org/10.7546/nntdm.2020.26.3.96-106">Half self-convolution of the k-Fibonacci sequence</a>, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 3, 96-106.
%H Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, <a href="https://arxiv.org/abs/1808.01264">The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials</a>, arXiv:1808.01264 [math.NT], 2018.
%H Ricardo Gómez Aíza, <a href="https://arxiv.org/abs/2402.16111">Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis</a>, arXiv:2402.16111 [math.CO], 2024. See p. 23.
%H Milan Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Janjic/janjic33.html">Hessenberg Matrices and Integer Sequences </a>, J. Int. Seq. 13 (2010) # 10.7.8, section 3.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-2,-4,-1).
%F a(n) = Sum_{k=0..n} b(k)*b(n-k) with b(k) := A000129(k).
%F a(n) = Sum_{k=0..floor((n-2)/2)} 2^(n-2)*(n-k-1)*binomial(n-2-k, k)*(1/4)^k, n >= 2.
%F From _Wolfdieter Lang_, Apr 11 2000: (Start)
%F a(n) = ((n-1)*P(n) + n*P(n-1))/4, P(n)=A000129(n).
%F G.f.: (x/(1 - 2*x - x^2))^2. (End)
%F a(n) = F'(n, 2), the derivative of the n-th Fibonacci polynomial evaluated at x=2. - _T. D. Noe_, Jan 19 2006
%e G.f. = x^2 + 4*x^3 + 14*x^4 + 44*x^5 + 131*x^6 + 376*x^7 + 1052*x^8 + ...
%p a:= n-> (Matrix(4, (i,j)-> if i=j-1 then 1 elif j=1 then [4, -2, -4, -1][i] else 0 fi)^n) [1,3]: seq(a(n), n=0..40); # _Alois P. Heinz_, Oct 28 2008
%t pell[n_] := Simplify[ ((1+Sqrt[2])^n - (1-Sqrt[2])^n)/(2*Sqrt[2])]; a[n_] := First[ ListConvolve[ pp = Array[pell, n+1, 0], pp]]; Table[a[n], {n, 0, 28}] (* _Jean-François Alcover_, Oct 21 2011 *)
%t Table[(n Fibonacci[n - 1, 2] + (n - 1) Fibonacci[n, 2])/4, {n, 0, 30}] (* _Vladimir Reshetnikov_, May 08 2016 *)
%o (Sage) taylor( mul(x/(1 - 2*x - x^2) for i in range(1,3)),x,0,28) # _Zerinvary Lajos_, Jun 03 2009
%Y a(n)= A054456(n-1, 1), n>=1 (second column of triangle), A054457.
%K nonn,easy
%O 0,4
%A _N. J. A. Sloane_
%E Sum formulas and cross-references added by _Wolfdieter Lang_, Aug 07 2002