login
Self-convolution of Pell numbers (A000129).
16

%I #58 Mar 01 2024 09:59:32

%S 0,0,1,4,14,44,131,376,1052,2888,7813,20892,55338,145428,379655,

%T 985520,2545720,6547792,16777993,42847988,109099078,277040572,

%U 701794187,1773851304,4474555476,11266301976,28318897549,71070913036,178106093666,445740656420,1114147888655

%N Self-convolution of Pell numbers (A000129).

%D R. P. Grimaldi, Ternary strings with no consecutive 0's and no consecutive 1's, Congressus Numerantium, 205 (2011), 129-149. (The sequences w_n and z_n)

%H Michael De Vlieger, <a href="/A006645/b006645.txt">Table of n, a(n) for n = 0..2605</a>

%H Jean-Luc Baril and José Luis Ramírez, <a href="https://arxiv.org/abs/2302.12741">Descent distribution on Catalan words avoiding ordered pairs of Relations</a>, arXiv:2302.12741 [math.CO], 2023.

%H Sergio Falcon, <a href="https://doi.org/10.7546/nntdm.2020.26.3.96-106">Half self-convolution of the k-Fibonacci sequence</a>, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 3, 96-106.

%H Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, <a href="https://arxiv.org/abs/1808.01264">The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials</a>, arXiv:1808.01264 [math.NT], 2018.

%H Ricardo Gómez Aíza, <a href="https://arxiv.org/abs/2402.16111">Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis</a>, arXiv:2402.16111 [math.CO], 2024. See p. 23.

%H Milan Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Janjic/janjic33.html">Hessenberg Matrices and Integer Sequences </a>, J. Int. Seq. 13 (2010) # 10.7.8, section 3.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-2,-4,-1).

%F a(n) = Sum_{k=0..n} b(k)*b(n-k) with b(k) := A000129(k).

%F a(n) = Sum_{k=0..floor((n-2)/2)} 2^(n-2)*(n-k-1)*binomial(n-2-k, k)*(1/4)^k, n >= 2.

%F From _Wolfdieter Lang_, Apr 11 2000: (Start)

%F a(n) = ((n-1)*P(n) + n*P(n-1))/4, P(n)=A000129(n).

%F G.f.: (x/(1 - 2*x - x^2))^2. (End)

%F a(n) = F'(n, 2), the derivative of the n-th Fibonacci polynomial evaluated at x=2. - _T. D. Noe_, Jan 19 2006

%e G.f. = x^2 + 4*x^3 + 14*x^4 + 44*x^5 + 131*x^6 + 376*x^7 + 1052*x^8 + ...

%p a:= n-> (Matrix(4, (i,j)-> if i=j-1 then 1 elif j=1 then [4, -2, -4, -1][i] else 0 fi)^n) [1,3]: seq(a(n), n=0..40); # _Alois P. Heinz_, Oct 28 2008

%t pell[n_] := Simplify[ ((1+Sqrt[2])^n - (1-Sqrt[2])^n)/(2*Sqrt[2])]; a[n_] := First[ ListConvolve[ pp = Array[pell, n+1, 0], pp]]; Table[a[n], {n, 0, 28}] (* _Jean-François Alcover_, Oct 21 2011 *)

%t Table[(n Fibonacci[n - 1, 2] + (n - 1) Fibonacci[n, 2])/4, {n, 0, 30}] (* _Vladimir Reshetnikov_, May 08 2016 *)

%o (Sage) taylor( mul(x/(1 - 2*x - x^2) for i in range(1,3)),x,0,28) # _Zerinvary Lajos_, Jun 03 2009

%Y a(n)= A054456(n-1, 1), n>=1 (second column of triangle), A054457.

%K nonn,easy

%O 0,4

%A _N. J. A. Sloane_

%E Sum formulas and cross-references added by _Wolfdieter Lang_, Aug 07 2002