login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303281
Expansion of (x/(1 - x)) * (d/dx) Sum_{p prime, k>=1} x^(p^k)/(1 - x^(p^k)).
4
0, 2, 5, 13, 18, 30, 37, 61, 79, 99, 110, 146, 159, 187, 217, 281, 298, 352, 371, 431, 473, 517, 540, 636, 686, 738, 819, 903, 932, 1022, 1053, 1213, 1279, 1347, 1417, 1561, 1598, 1674, 1752, 1912, 1953, 2079, 2122, 2254, 2389, 2481, 2528, 2768, 2866, 3016, 3118, 3274, 3327, 3543, 3653
OFFSET
1,2
COMMENTS
Sum of exponents in prime-power factorization of hyperfactorial: Product_{k=1..n} k^k (A002109).
Partial sums of A066959.
EXAMPLE
a(4) = 13 because 2^2*3^3*4^4 = 2^10*3^3 and 10 + 3 = 13.
MATHEMATICA
nmax = 55; Rest[CoefficientList[Series[x/(1 - x) D[Sum[Boole[PrimePowerQ[k]] x^k/(1 - x^k), {k, 1, nmax}], x], {x, 0, nmax}], x]]
Table[PrimeOmega[Hyperfactorial[n]], {n, 55}]
Table[Sum[k PrimeOmega[k], {k, n}], {n, 55}]
PROG
(PARI) a(n) = sum(k=1, n, k*bigomega(k)); \\ Altug Alkan, Apr 20 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 20 2018
STATUS
approved