OFFSET
1,2
COMMENTS
LINKS
Eric Weisstein's World of Mathematics, Hyperfactorial
Eric Weisstein's World of Mathematics, K-Function
EXAMPLE
a(4) = 13 because 2^2*3^3*4^4 = 2^10*3^3 and 10 + 3 = 13.
MATHEMATICA
nmax = 55; Rest[CoefficientList[Series[x/(1 - x) D[Sum[Boole[PrimePowerQ[k]] x^k/(1 - x^k), {k, 1, nmax}], x], {x, 0, nmax}], x]]
Table[PrimeOmega[Hyperfactorial[n]], {n, 55}]
Table[Sum[k PrimeOmega[k], {k, n}], {n, 55}]
PROG
(PARI) a(n) = sum(k=1, n, k*bigomega(k)); \\ Altug Alkan, Apr 20 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 20 2018
STATUS
approved