The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A303281 Expansion of (x/(1 - x)) * (d/dx) Sum_{p prime, k>=1} x^(p^k)/(1 - x^(p^k)). 4
0, 2, 5, 13, 18, 30, 37, 61, 79, 99, 110, 146, 159, 187, 217, 281, 298, 352, 371, 431, 473, 517, 540, 636, 686, 738, 819, 903, 932, 1022, 1053, 1213, 1279, 1347, 1417, 1561, 1598, 1674, 1752, 1912, 1953, 2079, 2122, 2254, 2389, 2481, 2528, 2768, 2866, 3016, 3118, 3274, 3327, 3543, 3653 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Sum of exponents in prime-power factorization of hyperfactorial: Product_{k=1..n} k^k (A002109).
Partial sums of A066959.
LINKS
Eric Weisstein's World of Mathematics, Hyperfactorial
Eric Weisstein's World of Mathematics, K-Function
EXAMPLE
a(4) = 13 because 2^2*3^3*4^4 = 2^10*3^3 and 10 + 3 = 13.
MATHEMATICA
nmax = 55; Rest[CoefficientList[Series[x/(1 - x) D[Sum[Boole[PrimePowerQ[k]] x^k/(1 - x^k), {k, 1, nmax}], x], {x, 0, nmax}], x]]
Table[PrimeOmega[Hyperfactorial[n]], {n, 55}]
Table[Sum[k PrimeOmega[k], {k, n}], {n, 55}]
PROG
(PARI) a(n) = sum(k=1, n, k*bigomega(k)); \\ Altug Alkan, Apr 20 2018
CROSSREFS
Sequence in context: A333876 A156013 A112634 * A235204 A354706 A348392
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 20 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 18:41 EDT 2024. Contains 373410 sequences. (Running on oeis4.)