login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A303283 Squarefree numbers whose prime indices have no common divisor other than 1 but are not pairwise coprime. 9
42, 78, 105, 114, 130, 174, 182, 195, 210, 222, 230, 231, 258, 266, 285, 318, 345, 357, 366, 370, 390, 406, 426, 429, 435, 455, 462, 470, 474, 483, 494, 518, 534, 546, 555, 570, 598, 602, 606, 610, 627, 638, 642, 645, 651, 663, 665, 678, 690, 705, 714, 715 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A prime index of n is a number m such that prime(m) divides n. Two or more numbers are coprime if no pair of them has a common divisor other than 1.

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

LINKS

Table of n, a(n) for n=1..52.

EXAMPLE

The sequence of strict integer partitions whose Heinz numbers belong to this sequence begins (4,2,1), (6,2,1), (4,3,2), (8,2,1), (6,3,1), (10,2,1), (6,4,1), (6,3,2), (4,3,2,1), (12,2,1), (9,3,1), (5,4,2), (14,2,1), (8,4,1), (8,3,2), (16,2,1), (9,3,2), (7,4,2), (18,2,1), (12,3,1), (6,3,2,1).

MATHEMATICA

primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];

Select[Range[400], SquareFreeQ[#]&&!CoprimeQ@@primeMS[#]&&GCD@@primeMS[#]===1&]

CROSSREFS

Cf. A000837, A001222, A018783, A051424, A056239, A078374, A168532, A289508, A289509, A296150, A298748, A300486, A302569, A302696, A302796, A303138, A303139, A303140, A303282.

Sequence in context: A039525 A072326 A068700 * A135850 A250381 A153644

Adjacent sequences:  A303280 A303281 A303282 * A303284 A303285 A303286

KEYWORD

nonn

AUTHOR

Gus Wiseman, Apr 20 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 6 15:33 EDT 2020. Contains 336252 sequences. (Running on oeis4.)