login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A068700 The concatenation of n with n-1 and n with n+1 both yield primes (twin primes). 4
42, 78, 102, 108, 180, 192, 270, 300, 312, 330, 342, 390, 420, 522, 540, 612, 660, 822, 840, 882, 1002, 1140, 1230, 1272, 1482, 1542, 1632, 1770, 2100, 2190, 2682, 2742, 3072, 3198, 3408, 3642, 3828, 4242, 4452, 4572, 4740, 4788, 4998, 5622, 5718, 5832 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

All terms are congruent to {0, 12, 18} mod 30. - Zak Seidov, Oct 24 2014

a(n) = 2 * A102478(n). - Reinhard Zumkeller, Jun 27 2015

LINKS

Zak Seidov, Table of n, a(n) for n = 1..10000

EXAMPLE

42 is a member as 4241 as well as 4243 are primes.

MAPLE

filter:= proc(n)

local d;

d:= ilog10(n)+1;

isprime(n*10^d+n-1) and isprime(n*10^d+n+1)

end proc:

select(filter, [$1..10^5]); # Robert Israel, Oct 24 2014

MATHEMATICA

d[n_]:=IntegerDigits[n]; conQ[n_]:=And@@PrimeQ[FromDigits/@{Join[d[n], d[n+1]], Join[d[n], d[n-1]]}]; Select[Range[5850], conQ[#] &] (* Jayanta Basu, May 21 2013 *)

PROG

(PARI) for(n=2, 200, if(isprime(n*10^ceil(log(n-1)/log(10))+n-1)*isprime(n*10^ceil(log(n+1)/log(10))+n+1)==1, print1(n, ", ")))

(Haskell)

import Data.List.Ordered (isect)

a068700 n = a068700_list !! (n-1)

a068700_list = isect a030457_list a054211_list

-- Reinhard Zumkeller, Jun 27 2015

CROSSREFS

Common terms of A030458 and A052089.

Intersection of A030457 and A054211; A102478.

Sequence in context: A259737 A039525 A072326 * A303283 A135850 A250381

Adjacent sequences:  A068697 A068698 A068699 * A068701 A068702 A068703

KEYWORD

base,nonn

AUTHOR

Amarnath Murthy, Mar 04 2002

EXTENSIONS

More terms from Benoit Cloitre, Mar 09 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 20 08:27 EDT 2019. Contains 326143 sequences. (Running on oeis4.)