login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052089
Primes formed by concatenating k with k-1.
32
43, 109, 2221, 2423, 3433, 4241, 5857, 7069, 7877, 8887, 10099, 102101, 108107, 112111, 114113, 124123, 148147, 154153, 160159, 172171, 180179, 192191, 198197, 202201, 208207, 210209, 214213, 238237, 244243, 262261, 264263, 268267, 270269, 282281, 294293, 300299
OFFSET
1,1
EXAMPLE
2423 is a prime and a concatenation of 24 and 23.
MATHEMATICA
Sort[Select[FromDigits[Flatten[IntegerDigits/@#]]&/@Partition[ Range[ 300, 1, -1], 2, 1], PrimeQ]] (* Harvey P. Dale, May 09 2012 *)
PROG
(PARI) for(n=4, 1e4, if(isprime(t=eval(Str(n, n-1))), print1(t", "))) \\ Charles R Greathouse IV, May 07 2013
(Magma) [Seqint(Intseq(n-1) cat Intseq(n)): n in [2..300 by 2] | IsPrime(Seqint(Intseq(n-1) cat Intseq(n)))]; // Marius A. Burtea, Mar 21 2019
(Python)
from sympy import isprime
from itertools import count, islice
def agen(): yield from filter(isprime, (int(str(k)+str(k-1)) for k in count(2, 2)))
print(list(islice(agen(), 36))) # Michael S. Branicky, Aug 05 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Jan 15 2000
STATUS
approved