

A111047


Product of continued fraction terms of H(n) = sum{k=1..n} 1/k.


0



1, 2, 5, 24, 48, 32, 100, 140, 840, 1872, 54000, 12960, 51840, 533871, 322371, 31104, 709632, 1921500, 4147200, 3701376, 124416, 262080, 2488320, 21811680, 403107840, 146966400, 2538086400, 1074954240, 14370048000, 415704960000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The last term of each continued fraction is considered to be >=2, for n>=2.


LINKS

Table of n, a(n) for n=1..30.


EXAMPLE

1 + 1/2 + 1/3+ 1/4 + 1/5 + 1/6 = 49/20 = 2 + 1/(2 + 1/(4 +1/2)), so the 6th term of the sequence is 2*2*4*2 = 32.


PROG

(PARI) for(n=1, 30, v=contfrac(sum(k=1, n, 1/k)); print1(prod(j=1, length(v), v[j]), ", "))


CROSSREFS

Cf. A100398, A058027.
Sequence in context: A130379 A229210 A047147 * A068964 A200402 A010365
Adjacent sequences: A111044 A111045 A111046 * A111048 A111049 A111050


KEYWORD

nonn


AUTHOR

Leroy Quet, Oct 06 2005


EXTENSIONS

More terms from Klaus Brockhaus, Oct 08 2005


STATUS

approved



