login
A110550
Periodic {1,3,2,4,4,2,3,1}.
5
1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1
OFFSET
0,2
COMMENTS
Permutation of {1,2,3,4} followed by its reversal, repeated.
Simple continued fraction expansion of (671 + sqrt 7241477)/2606. - R. J. Mathar, Mar 08 2012
FORMULA
G.f.: -(x^2+3*x+1)*(x^2-x+1) / ( (x-1)*(1+x^4) ).
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7).
MATHEMATICA
PadRight[{}, 100, {1, 3, 2, 4, 4, 2, 3, 1}] (* G. C. Greubel, Aug 31 2017 *)
PROG
(Scheme) (define (A110550 n) (list-ref '(1 3 2 4 4 2 3 1) (modulo n 8))) ;; Antti Karttunen, Aug 10 2017
(PARI) x='x+O('x^50); Vec((x^2+3*x+1)*(x^2-x+1)/((1-x)*(1+x^4))) \\ G. C. Greubel, Aug 31 2017
CROSSREFS
Sequence in context: A010270 A230499 A023630 * A236333 A128220 A258242
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 26 2005
STATUS
approved