The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110550 Periodic {1,3,2,4,4,2,3,1}. 5
 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1, 1, 3, 2, 4, 4, 2, 3, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Permutation of {1,2,3,4} followed by its reversal, repeated. Simple continued fraction expansion of (671 + sqrt 7241477)/2606. - R. J. Mathar, Mar 08 2012 LINKS Antti Karttunen, Table of n, a(n) for n = 0..8191 Index entries for linear recurrences with constant coefficients, signature (1,0,0,-1,1). FORMULA G.f.: -(x^2+3*x+1)*(x^2-x+1) / ( (x-1)*(1+x^4) ). a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7). a(n) = (1/15)*(5*(n mod 8) + 19*((n+1) mod 8) - 2*((n+2) mod 8) + 19*((n+3) mod 8) + 5*((n+4) mod 8) - 9*((n+5) mod 8) + 12*((n+5) mod 8) - 9*((n+5) mod 8)), with n >= 0. - Paolo P. Lava, Jun 11 2007 MATHEMATICA PadRight[{}, 100, {1, 3, 2, 4, 4, 2, 3, 1}] (* G. C. Greubel, Aug 31 2017 *) PROG (Scheme) (define (A110550 n) (list-ref '(1 3 2 4 4 2 3 1) (modulo n 8))) ;; Antti Karttunen, Aug 10 2017 (PARI) x='x+O('x^50); Vec((x^2+3*x+1)*(x^2-x+1)/((1-x)*(1+x^4))) \\ G. C. Greubel, Aug 31 2017 CROSSREFS Cf. A105198, A110549. Sequence in context: A010270 A230499 A023630 * A236333 A128220 A258242 Adjacent sequences:  A110547 A110548 A110549 * A110551 A110552 A110553 KEYWORD easy,nonn AUTHOR Paul Barry, Jul 26 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 7 18:13 EDT 2021. Contains 343652 sequences. (Running on oeis4.)