Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 May 15 2019 06:01:22
%S 1,2,4,3,3,4,2,1,1,2,4,3,3,4,2,1,1,2,4,3,3,4,2,1,1,2,4,3,3,4,2,1,1,2,
%T 4,3,3,4,2,1,1,2,4,3,3,4,2,1,1,2,4,3,3,4,2,1,1,2,4,3,3,4,2,1,1,2,4,3,
%U 3,4,2,1,1,2,4,3,3,4,2,1,1,2,4,3,3,4,2,1,1,2,4,3,3,4,2,1
%N Period 8: repeat [1, 2, 4, 3, 3, 4, 2, 1].
%C Permutation of {1,2,3,4} followed by its reversal, repeated.
%C Continued fraction expansion of (337 + sqrt(905669))/890 = 1.44793981253727... - _R. J. Mathar_, Mar 08 2012
%H Antti Karttunen, <a href="/A110549/b110549.txt">Table of n, a(n) for n = 0..8191</a>
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,-1,1,-1,1,-1,1).
%F G.f.: (1 + x + 3*x^2 + 3*x^4 + x^5 + x^6)/(1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7). [corrected by _Georg Fischer_, May 15 2019]
%F a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7);
%F a(n) = cos(3*Pi*n/4 + Pi/4)/2 + (1/2 - sqrt(2)/2)*sin(3*Pi*n/4 + Pi/4) - (1/2 + sqrt(2)/2)*cos(Pi*n/4 + Pi/4) - sin(Pi*n/4 + Pi/4)/2 - cos(Pi*n/2)/2 + sin(Pi*n/2)/2 + 5/2.
%F a(n) = 1 + A105198(n).
%F a(n) = 1 + (A000217(n) mod 4). - _Jon E. Schoenfield_, Aug 11 2017
%t PadRight[{},120,{1,2,4,3,3,4,2,1}] (* _Harvey P. Dale_, May 12 2015 *)
%o (PARI) a(n)=[1,2,4,3,3,4,2,1][n%8+1] \\ _Charles R Greathouse IV_, Oct 16 2015
%Y One more than A105198.
%K nonn,easy
%O 0,2
%A _Paul Barry_, Jul 26 2005