login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) = number of n-element 0..3 arrays with each element the minimum of k adjacent elements of a random 0..3 array of n+k-1 elements.
10

%I #10 Sep 02 2013 09:55:09

%S 4,4,16,4,16,64,4,16,50,256,4,16,50,144,1024,4,16,50,130,422,4096,4,

%T 16,50,130,310,1268,16384,4,16,50,130,296,736,3823,65536,4,16,50,130,

%U 296,624,1821,11472,262144,4,16,50,130,296,610,1289,4673,34350,1048576,4,16

%N T(n,k) = number of n-element 0..3 arrays with each element the minimum of k adjacent elements of a random 0..3 array of n+k-1 elements.

%C See A228461 for comments on the definition. - _N. J. A. Sloane_, Sep 02 2013

%C Table starts

%C ........4......4......4.....4.....4.....4.....4.....4.....4.....4.....4.....4

%C .......16.....16.....16....16....16....16....16....16....16....16....16....16

%C .......64.....50.....50....50....50....50....50....50....50....50....50....50

%C ......256....144....130...130...130...130...130...130...130...130...130...130

%C .....1024....422....310...296...296...296...296...296...296...296...296...296

%C .....4096...1268....736...624...610...610...610...610...610...610...610...610

%C ....16384...3823...1821..1289..1177..1163..1163..1163..1163..1163..1163..1163

%C ....65536..11472...4673..2741..2209..2097..2083..2083..2083..2083..2083..2083

%C ...262144..34350..12107..6134..4202..3670..3558..3544..3544..3544..3544..3544

%C ..1048576.102896..31103.14269..8366..6434..5902..5790..5776..5776..5776..5776

%C ..4194304.308419..79039.33577.17569.11666..9734..9202..9090..9076..9076..9076

%C .16777216.924532.199819.78304.38251.22313.16410.14478.13946.13834.13820.13820

%H R. H. Hardin, <a href="/A217954/b217954.txt">Table of n, a(n) for n = 1..1275</a>

%F Empirical for column k:

%F k=2: a(n) = 4*a(n-1) -6*a(n-2) +10*a(n-3) -5*a(n-4) +6*a(n-5) -a(n-6) +a(n-7)

%F k=3: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) +5*a(n-4) -4*a(n-5) +6*a(n-6) +4*a(n-7) +2*a(n-9) +a(n-10)

%F k=4: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +6*a(n-5) -4*a(n-6) +6*a(n-7) +4*a(n-8) +5*a(n-9) +a(n-10) +3*a(n-11) +2*a(n-12) +a(n-13)

%F k=5: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +6*a(n-6) -4*a(n-7) +6*a(n-8) +4*a(n-9) +5*a(n-10) +6*a(n-11) +2*a(n-12) +4*a(n-13) +3*a(n-14) +2*a(n-15) +a(n-16)

%F k=6: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +6*a(n-7) -4*a(n-8) +6*a(n-9) +4*a(n-10) +5*a(n-11) +6*a(n-12) +7*a(n-13) +3*a(n-14) +5*a(n-15) +4*a(n-16) +3*a(n-17) +2*a(n-18) +a(n-19)

%F k=7: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +6*a(n-8) -4*a(n-9) +6*a(n-10) +4*a(n-11) +5*a(n-12) +6*a(n-13) +7*a(n-14) +8*a(n-15) +4*a(n-16) +6*a(n-17) +5*a(n-18) +4*a(n-19) +3*a(n-20) +2*a(n-21) +a(n-22)

%F Diagonal: a(n) = (1/720)*n^6 + (1/48)*n^5 + (23/144)*n^4 + (9/16)*n^3 + (241/180)*n^2 + (11/12)*n + 1

%e Some solutions for n=4 k=4

%e ..0....1....0....1....1....0....1....2....0....1....1....1....0....0....3....0

%e ..0....1....1....1....3....3....2....2....2....1....2....2....1....2....3....2

%e ..1....3....3....2....3....2....3....3....2....1....1....3....1....2....2....3

%e ..1....1....3....3....0....0....0....1....0....0....1....3....0....1....2....0

%Y Column 2 is A203094(n+1). A217949 is also a column. Cf. A228461, A217883.

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, suggestion that the diagonal might be a polynomial from _L. Edson Jeffery_ in the Sequence Fans Mailing List, Oct 15 2012