login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Two-dimensional array read by antidiagonals: T(n,k) = number of arrays of maxima of three adjacent elements of some length n+2 0..k array.
14

%I #18 Dec 07 2016 23:29:29

%S 2,3,4,4,9,7,5,16,22,11,6,25,50,46,17,7,36,95,130,91,27,8,49,161,295,

%T 310,183,44,9,64,252,581,821,736,383,72,10,81,372,1036,1847,2227,1821,

%U 819,117,11,100,525,1716,3703,5615,6254,4673,1749,189,12,121,715,2685,6812

%N Two-dimensional array read by antidiagonals: T(n,k) = number of arrays of maxima of three adjacent elements of some length n+2 0..k array.

%C There are two arrays (or lists, or vectors) involved, a length n+2 array with free elements from 0..k (thus (k+1)^(n+2) of them) and an array that is being enumerated of length n, each element of the latter being the maximum of three adjacent elements of the first array.

%C Many different first arrays can give the same second array.

%H R. H. Hardin, <a href="/A228461/b228461.txt">Table of n, a(n) for n = 1..1700</a>

%F Empirical for column k:

%F k=1: a(n) = 2*a(n-1) -a(n-2) +a(n-4)

%F k=2: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +3*a(n-4) -a(n-5) +a(n-6) +a(n-7)

%F k=3: [order 10]

%F k=4: [order 13]

%F k=5: [order 16]

%F k=6: [order 19]

%F k=7: [order 22]

%F Empirical for row n:

%F n=1: a(n) = n + 1

%F n=2: a(n) = n^2 + 2*n + 1

%F n=3: a(n) = (2/3)*n^3 + (5/2)*n^2 + (17/6)*n + 1

%F n=4: a(n) = (1/3)*n^4 + 2*n^3 + (25/6)*n^2 + (7/2)*n + 1

%F n=5: a(n) = (2/15)*n^5 + (7/6)*n^4 + (25/6)*n^3 + (19/3)*n^2 + (21/5)*n + 1

%F n=6: [polynomial of degree 6]

%F n=7: [polynomial of degree 7]

%e Table starts

%e ...2....3.....4.....5......6......7.......8.......9......10.......11.......12

%e ...4....9....16....25.....36.....49......64......81.....100......121......144

%e ...7...22....50....95....161....252.....372.....525.....715......946.....1222

%e ..11...46...130...295....581...1036....1716....2685....4015.....5786.....8086

%e ..17...91...310...821...1847...3703....6812...11721...19117....29843....44914

%e ..27..183...736..2227...5615..12453...25096...46941...82699...138699...223224

%e ..44..383..1821..6254..17487..42386...92430..185727..349558...623513..1063283

%e ..72..819..4673.18394..57303.151882..357510..768231.1535578..2893605..5191407

%e .117.1749.12107.55285.194064.567835.1453506.3357985.7152815.14263777.26930773

%e Some solutions for n=4 k=4

%e ..3....4....4....3....3....4....3....4....3....0....3....3....4....2....0....2

%e ..0....4....1....3....2....0....2....4....1....0....3....3....1....2....0....0

%e ..4....1....1....0....1....0....4....0....0....0....2....1....4....2....2....3

%e ..4....0....3....3....2....0....4....2....3....1....3....1....4....0....4....3

%Y Column 1 is A005252(n+3)

%Y Column 2 is A217878

%Y Column 3 is A217949.

%Y A228464 is another column.

%Y Row 1 is A000027(n+1)

%Y Row 2 is A000290(n+1)

%Y Row 3 is A002412(n+1)

%Y Row 4 is A006324(n+1)

%Y See A217883, A217954 for similar arrays.

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_ Aug 22 2013

%E Edited by _N. J. A. Sloane_, Sep 02 2013