login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258479
Number of partitions of n into two sorts of parts having exactly 9 parts of the second sort.
2
1, 11, 67, 298, 1080, 3379, 9453, 24204, 57658, 129335, 275693, 562454, 1104484, 2097247, 3865383, 6937016, 12154390, 20838939, 35029203, 57829458, 93897437, 150150058, 236723504, 368350864, 566187387, 860416074, 1293614426, 1925547270, 2839214222, 4149449828
OFFSET
9,2
LINKS
MAPLE
b:= proc(n, i) option remember; series(`if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-1)*add(x^t*
binomial(j, t), t=0..min(9, j)), j=0..n/i))), x, 10)
end:
a:= n-> coeff(b(n$2), x, 9):
seq(a(n), n=9..40);
CROSSREFS
Column k=9 of A256193.
Sequence in context: A201605 A268458 A001808 * A035041 A125591 A092841
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 31 2015
STATUS
approved