login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061593 Number of ways to place 2n nonattacking kings on a 4 X 2n chessboard. 10
12, 79, 408, 1847, 7698, 30319, 114606, 419933, 1501674, 5266069, 18174084, 61892669, 208424880, 695179339, 2299608732, 7552444115, 24648046806, 79994460139, 258339007890, 830619734681, 2660070154542, 8488515938929, 27000079296648, 85629004867577 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Bruno Berselli, Table of n, a(n) for n = 1..200

V. Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 90.

D. E. Knuth, Nonattacking kings on a chessboard, 1994.

H. S. Wilf, The problem of the kings, Elec. J. Combin. 2, 1995.

Index entries for linear recurrences with constant coefficients, signature (9,-28,33,-9).

FORMULA

G.f.: x*(12-29*x+33*x^2-9*x^3)/((1-3*x+x^2)*(1-3*x)^2).

a(n) = 9*a(n-1)-28*a(n-2)+33*a(n-3)-9*a(n-4), a(1)=12, a(2)=79, a(3)=408, a(4)=1847.

a(n) = (17*n-109)*3^n+2*Fibonacci(2*n+10).

a(n) = 17*A027471(n+2)-126*A000244(n)+A025169(n+4).

MAPLE

with(combinat): A061593:=n->(17*n-109)*3^n+2*fibonacci(2*n+10): seq(A061593(n), n=1..30); # Wesley Ivan Hurt, Nov 08 2014

MATHEMATICA

Table[(17 n - 109)*3^n + 2 Fibonacci[2 n + 10], {n, 30}] (* Wesley Ivan Hurt, Nov 08 2014 *)

PROG

(MAGMA) [(17*n-109)*3^n+2*Fibonacci(2*n+10): n in [1..30]]; // Vincenzo Librandi, Jul 12 2011

CROSSREFS

Cf. A061594, A001787.

Sequence in context: A224775 A258480 A035042 * A243955 A232044 A190216

Adjacent sequences:  A061590 A061591 A061592 * A061594 A061595 A061596

KEYWORD

nonn,easy,nice

AUTHOR

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 22 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 25 12:45 EDT 2017. Contains 289795 sequences.