login
A350819
Array read by antidiagonals: T(m,n) is the number of maximum independent sets in the 2m X 2n king graph.
14
1, 1, 1, 1, 4, 1, 1, 12, 12, 1, 1, 32, 79, 32, 1, 1, 80, 408, 408, 80, 1, 1, 192, 1847, 3600, 1847, 192, 1, 1, 448, 7698, 26040, 26040, 7698, 448, 1, 1, 1024, 30319, 166368, 281571, 166368, 30319, 1024, 1, 1, 2304, 114606, 976640, 2580754, 2580754, 976640, 114606, 2304, 1
OFFSET
0,5
COMMENTS
Number of ways to tile a (2m+1) X (2n+1) board with m*n 2 X 2 tiles and 2m+2n+1 1 X 1 tiles.
For m,n > 0, T(m,n) is the number of minimum dominating sets in the (3m-1) X (3n-1) king graph.
LINKS
Eric Weisstein's World of Mathematics, King Graph
Eric Weisstein's World of Mathematics, Maximum Independent Vertex Set
FORMULA
T(m,n) = T(n,m).
T(m,n) = A350818(2*m, 2*n) = A350815(3*m-1, 3*n-1).
EXAMPLE
Table begins:
=============================================
m\n | 0 1 2 3 4 5
----+----------------------------------------
0 | 1 1 1 1 1 1 ...
1 | 1 4 12 32 80 192 ...
2 | 1 12 79 408 1847 7698 ...
3 | 1 32 408 3600 26040 166368 ...
4 | 1 80 1847 26040 281571 2580754 ...
5 | 1 192 7698 166368 2580754 32572756 ...
...
CROSSREFS
Main diagonal is A018807.
Sequence in context: A213166 A168619 A099759 * A072590 A350745 A111636
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Jan 17 2022
STATUS
approved