OFFSET
1,5
REFERENCES
J. W. Moon, Counting Labeled Trees, Issue 1 of Canadian mathematical monographs, Canadian Mathematical Congress, 1970.
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Exercise 5.66.
LINKS
T. D. Noe, Antidiagonals d=1..50, flattened
Taylor Brysiewicz and Aida Maraj, Lawrence Lifts, Matroids, and Maximum Likelihood Degrees, arXiv:2310.13064 [math.CO], 2023. See p. 13.
H. I. Scoins, The number of trees with nodes of alternate parity, Proc. Cambridge Philos. Soc. 58 (1962) 12-16.
Eric Weisstein's World of Mathematics, Complete Bipartite Graph
Eric Weisstein's World of Mathematics, Spanning Tree
FORMULA
T(n, k) = n^(k-1) * k^(n-1).
E.g.f.: A(x,y) - 1, where: A(x,y) = exp( x*exp( y*A(x,y) ) ) = Sum_{n>=0} Sum_{k=0..n} (n-k)^k * (k+1)^(n-k-1) * x^(n-k)/(n-k)! * y^k/k!. - Paul D. Hanna, Jan 22 2019
EXAMPLE
From Andrew Howroyd, Oct 29 2019: (Start)
Array begins:
============================================================
n\k | 1 2 3 4 5 6 7
----+-------------------------------------------------------
1 | 1 1 1 1 1 1 1 ...
2 | 1 4 12 32 80 192 448 ...
3 | 1 12 81 432 2025 8748 35721 ...
4 | 1 32 432 4096 32000 221184 1404928 ...
5 | 1 80 2025 32000 390625 4050000 37515625 ...
6 | 1 192 8748 221184 4050000 60466176 784147392 ...
7 | 1 448 35721 1404928 37515625 784147392 13841287201 ...
...
(End)
MATHEMATICA
t[n_, k_] := n^(k-1) * k^(n-1); Table[ t[n-k+1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 21 2013 *)
PROG
(PARI) {T(n, k) = if( n<1 || k<1, 0, n^(k-1) * k^(n-1))}
CROSSREFS
KEYWORD
AUTHOR
Michael Somos, Jun 23 2002
EXTENSIONS
Scoins reference from Philippe Deléham, Dec 22 2003
STATUS
approved