login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328888
Array read by antidiagonals: T(n,m) is the number of acyclic edge covers of the complete bipartite graph K_{n,m}.
5
1, 1, 1, 1, 6, 1, 1, 18, 18, 1, 1, 46, 132, 46, 1, 1, 110, 696, 696, 110, 1, 1, 254, 3150, 6728, 3150, 254, 1, 1, 574, 13086, 51760, 51760, 13086, 574, 1, 1, 1278, 51492, 348048, 632970, 348048, 51492, 1278, 1, 1, 2814, 195180, 2143736, 6466980, 6466980, 2143736, 195180, 2814, 1
OFFSET
1,5
COMMENTS
In other words, the number of spanning forests of the complete bipartite graph K_{n,m} without isolated vertices.
LINKS
Eric Weisstein's World of Mathematics, Complete Bipartite Graph
FORMULA
T(n,m) = A072590(n, m) + Sum_{i=1..n-1} Sum_{j=1, m-1} binomial(n-1, i-1) * binomial(m, j) * A072590(i, j) * T(n-i, m-j).
EXAMPLE
Array begins:
=============================================================
n\m | 1 2 3 4 5 6 7
----+--------------------------------------------------------
1 | 1 1 1 1 1 1 1 ...
2 | 1 6 18 46 110 254 574 ...
3 | 1 18 132 696 3150 13086 51492 ...
4 | 1 46 696 6728 51760 348048 2143736 ...
5 | 1 110 3150 51760 632970 6466980 58620030 ...
6 | 1 254 13086 348048 6466980 96208632 1231832364 ...
7 | 1 574 51492 2143736 58620030 1231832364 21634786586 ...
...
PROG
(PARI)
T(n, m=n)={my(M=matrix(n, m), N=matrix(n, m, n, m, n^(m-1) * m^(n-1))); for(n=1, n, for(m=1, m, M[n, m] = N[n, m] + sum(i=1, n-1, sum(j=1, m-1, binomial(n-1, i-1)*binomial(m, j)*N[i, j]*M[n-i, m-j])))); M}
{ my(A=T(7)); for(i=1, #A, print(A[i, ])) }
CROSSREFS
Column 2 is A328890.
Main diagonal is A328889.
Sequence in context: A157268 A146959 A157632 * A176125 A168289 A141690
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Oct 29 2019
STATUS
approved