login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099759
Triangle read by rows: T(n,0)=1, T(n,n)=1, T(n, k) = 2*(n-k)*T(n-1, k-1) + 2*k*T(n-1, k).
2
1, 1, 1, 1, 4, 1, 1, 12, 12, 1, 1, 30, 96, 30, 1, 1, 68, 564, 564, 68, 1, 1, 146, 2800, 6768, 2800, 146, 1, 1, 304, 12660, 63008, 63008, 12660, 304, 1, 1, 622, 54288, 504648, 1008128, 504648, 54288, 622, 1, 1, 1260, 225860, 3679344, 13111504, 13111504, 3679344, 225860, 1260, 1
OFFSET
0,5
FORMULA
Sum_{k=0..n} T(n, k) = 2*(n-1)*(Sum_{k=0..n-1} T(n-1, k)) + 2 = A099760(n).
EXAMPLE
Triangle begins:
1;
1, 1;
1, 4, 1;
1, 12, 12, 1;
1, 30, 96, 30, 1;
1, 68, 564, 564, 68, 1;
MAPLE
T:=proc(n, k) if k=0 or n=k then 1 elif k>n then 0 else 2*(n-k)*T(n-1, k-1)+2*k*T(n-1, k) fi end: for n from 0 to 9 do [seq(T(n, k), k=0..n)] od; # gives the triangle row by row # Emeric Deutsch, Nov 16 2004
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, 2*(n-k)*T[n-1, k-1] +2*k*T[n-1, k]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}]//Flatten (* G. C. Greubel, Sep 03 2019 *)
PROG
(PARI) T(n, k) = if(k==0 || k==n, 1, 2*(n-k)*T(n-1, k-1) + 2*k*T(n-1, k));
for(n=0, 9, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Sep 03 2019
(Sage)
def T(n, k):
if (k==0 or k==n): return 1
else: return 2*k*T(n-1, k) + 2*(n-k)* T(n-1, k-1)
[[T(n, k) for k in (0..n)] for n in (0..9)] # G. C. Greubel, Sep 03 2019
(GAP)
T:= function(n, k)
if k=0 or k=n then return 1;
else return 2*(n-k)*T(n-1, k-1) + 2*k*T(n-1, k);
fi;
end;
Flat(List([0..9], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Sep 03 2019
CROSSREFS
Sequence in context: A080416 A213166 A168619 * A350819 A072590 A350745
KEYWORD
easy,tabl,nonn
AUTHOR
Miklos Kristof, Nov 11 2004
EXTENSIONS
More terms from Emeric Deutsch, Nov 16 2004
STATUS
approved