login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061595
Product of digits + 1 is prime, sum of digits + 1 is prime and sum of digits - 1 is prime.
2
4, 6, 22, 66, 112, 114, 121, 123, 129, 132, 141, 147, 156, 165, 174, 189, 192, 198, 211, 213, 219, 231, 237, 273, 279, 291, 297, 312, 321, 327, 345, 354, 369, 372, 396, 411, 417, 435, 453, 459, 468, 471, 477, 486, 495, 516, 534, 543, 549, 561, 567, 576, 594
OFFSET
1,1
LINKS
EXAMPLE
For 147 we have (1*4*7) + 1 = 29, (1+4+7) + 1 = 13, (1+4+7) - 1 = 11.
MAPLE
a := proc (n) local nn: nn := convert(n, base, 10): if isprime(1+product(nn[j], j = 1 .. nops(nn))) = true and isprime(1+sum(nn[j], j = 1 .. nops(nn))) = true and isprime(-1+sum(nn[j], j = 1 .. nops(nn))) = true then n else end if end proc: seq(a(n), n = 1 .. 615); # Emeric Deutsch, Aug 02 2009
PROG
(PARI) isok(k)={my(d=digits(k), s=vecsum(d)); isprime(s+1) && isprime(s-1) && isprime(vecprod(d)+1)} \\ Harry J. Smith, Jul 25 2009
CROSSREFS
Subsequence of A167711.
Sequence in context: A192154 A289385 A151519 * A062940 A061596 A061597
KEYWORD
nonn,base
AUTHOR
Felice Russo, May 22 2001
EXTENSIONS
a(1)=4 and a(2)=6 added by Emeric Deutsch, Aug 02 2009
STATUS
approved