login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051604
a(n) = (3*n+4)!!!/4!!!.
10
1, 7, 70, 910, 14560, 276640, 6086080, 152152000, 4260256000, 132067936000, 4490309824000, 166141463488000, 6645658539520000, 285763317199360000, 13145112591170560000, 644110516967357440000, 33493746882302586880000, 1842156078526642278400000
OFFSET
0,2
COMMENTS
Related to A007559(n+1) ((3*n+1)!!! triple factorials).
Row m=4 of the array A(4; m,n) := ((3*n+m)(!^3))/m(!^3), m >= 0, n >= 0.
LINKS
FORMULA
a(n) = ((3*n+4)(!^3))/4(!^3).
E.g.f.: 1/(1-3*x)^(7/3).
Sum_{n>=0} 1/a(n) = 1 + 3*(3*e)^(1/3)*(Gamma(7/3) - Gamma(7/3, 1/3)). - Amiram Eldar, Dec 23 2022
MATHEMATICA
With[{nn = 30}, CoefficientList[Series[1/(1-3*x)^(7/3), {x, 0, nn}], x]* Range[0, nn]! ] (* G. C. Greubel, Aug 15 2018 *)
With[{c=Times@@Range[4, 1, -3]}, Table[(Times@@Range[3n+4, 1, -3])/c, {n, 0, 20}]] (* Harvey P. Dale, Feb 06 2023 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(1/(1-3*x)^(7/3))) \\ G. C. Greubel, Aug 15 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-3*x)^(7/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
CROSSREFS
Cf. A032031, A007559(n+1), A034000(n+1), A034001(n+1). (rows m=0..3).
Sequence in context: A124566 A141151 A001669 * A346668 A362775 A365031
KEYWORD
easy,nonn
STATUS
approved