login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Rows of triangle formed using Pascal's rule except we begin and end the n-th row with n.
24

%I #52 Oct 27 2023 22:00:44

%S 0,1,1,2,2,2,3,4,4,3,4,7,8,7,4,5,11,15,15,11,5,6,16,26,30,26,16,6,7,

%T 22,42,56,56,42,22,7,8,29,64,98,112,98,64,29,8,9,37,93,162,210,210,

%U 162,93,37,9,10,46,130,255,372,420,372,255,130,46,10

%N Rows of triangle formed using Pascal's rule except we begin and end the n-th row with n.

%C The number of spotlight tilings of an m X n rectangle missing the southeast corner. E.g., there are 2 spotlight tilings of a 2 X 2 square missing its southeast corner. - _Bridget Tenner_, Nov 10 2007

%C T(n,k) = A134636(n,k) - A051597(n,k). - _Reinhard Zumkeller_, Nov 23 2012

%C For a closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196. - _Boris Putievskiy_, Aug 18 2013

%C For a closed-form formula for generalized Pascal's triangle see A228576. - _Boris Putievskiy_, Sep 09 2013

%H Reinhard Zumkeller, <a href="/A051601/b051601.txt">Rows n = 0..120 of triangle, flattened</a>

%H B. E. Tenner, <a href="http://dx.doi.org/10.1007/s00026-011-0077-6">Spotlight tiling</a>, Ann. Combinat. 14 (4) (2010) 553-568.

%H <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>

%F T(m,n) = binomial(m+n,m) - 2*binomial(m+n-2,m-1), up to offset and transformation of array to triangular indices. - _Bridget Tenner_, Nov 10 2007

%F T(n,k) = binomial(n, k+1) + binomial(n, n-k+1). - _Roger L. Bagula_, Feb 17 2009

%F T(0,n) = T(n,0) = n, T(n,k) = T(n-1,k) + T(n-1,k-1), 0 < k < n.

%e From _Roger L. Bagula_, Feb 17 2009: (Start)

%e Triangle begins:

%e 0;

%e 1, 1;

%e 2, 2, 2;

%e 3, 4, 4, 3;

%e 4, 7, 8, 7, 4;

%e 5, 11, 15, 15, 11, 5;

%e 6, 16, 26, 30, 26, 16, 6;

%e 7, 22, 42, 56, 56, 42, 22, 7;

%e 8, 29, 64, 98, 112, 98, 64, 29, 8;

%e 9, 37, 93, 162, 210, 210, 162, 93, 37, 9;

%e 10, 46, 130, 255, 372, 420, 372, 255, 130, 46, 10;

%e 11, 56, 176, 385, 627, 792, 792, 627, 385, 176, 56, 11;

%e 12, 67, 232, 561, 1012, 1419, 1584, 1419, 1012, 561, 232, 67, 12. ... (End)

%p seq(seq(binomial(n,k+1) + binomial(n, n-k+1), k=0..n), n=0..12); # _G. C. Greubel_, Nov 12 2019

%t T[n_, k_]:= T[n, k] = Binomial[n, k+1] + Binomial[n, n-k+1];

%t Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _Roger L. Bagula_, Feb 17 2009; modified by _G. C. Greubel_, Nov 12 2019 *)

%o (Haskell)

%o a051601 n k = a051601_tabl !! n !! k

%o a051601_row n = a051601_tabl !! n

%o a051601_tabl = iterate

%o (\row -> zipWith (+) ([1] ++ row) (row ++ [1])) [0]

%o -- _Reinhard Zumkeller_, Nov 23 2012

%o (Magma) /* As triangle: */ [[Binomial(n,m+1)+Binomial(n,n-m+1): m in [0..n]]: n in [0..12]]; // _Bruno Berselli_, Aug 02 2013

%o (PARI) T(n,k) = binomial(n, k+1) + binomial(n, n-k+1);

%o for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Nov 12 2019

%o (Sage) [[binomial(n, k+1) + binomial(n, n-k+1) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Nov 12 2019

%o (GAP) Flat(List([0..12], n-> List([0..n], k-> Binomial(n, k+1) + Binomial(n, n-k+1) ))); # _G. C. Greubel_, Nov 12 2019

%Y Row sums give A000918(n+1).

%Y Cf. A007318, A224791, A228196, A228576.

%Y Columns from 2 to 9, respectively: A000124; A000125, A055795, A027660, A055796, A055797, A055798, A055799 (except 1 for the last seven). [_Bruno Berselli_, Aug 02 2013]

%Y Cf. A001477, A162551 (central terms).

%K nonn,tabl,easy

%O 0,4

%A _Asher Auel_