This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A162553 G.f.: A(x) = exp( Sum_{n>=1} A162552(n)^2*x^n/n ) where the l.g.f. of A162552 is the log of the characteristic function of the squares. 2
 1, 1, 1, 1, 3, 6, 10, 15, 18, 35, 73, 143, 230, 296, 416, 753, 1673, 2934, 4203, 5654, 9135, 17881, 33102, 52787, 73749, 107869, 189629, 359107, 619296, 923833, 1306855, 2065717, 3776424, 6823452, 10935160, 15822727, 23395694, 39675378 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS A162552 is defined by: exp( Sum_{n>=1} A162552(n)*x^n/n ) = Sum_{n>=0} x^(n^2). LINKS Paul D. Hanna, Table of n, a(n), n = 0..330. EXAMPLE G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 15*x^6 +... log(A(x)) = x + x^2/2 + x^3/3 + 9*x^4/4 + 16*x^5/5 + 25*x^6/6 + 36*x^7/7 +...+ A162552(n)^2*x^n/n +... Let L(x) = x - 1*x^2/2 + 1*x^3/3 + 3*x^4/4 - 4*x^5/5 + 5*x^6/6 - 6*x^7/7 +...+ A162552(n)*x^n/n +... then exp(L(x)) = 1 + x + x^4 + x^9 + x^16 + x^25 + x^36 +...+ x^(n^2) +... is the characteristic function of the squares (A010052). PROG (PARI) {a(n)=local(Q=sum(m=0, n, x^(m^2))+x*O(x^n), A); A=exp(sum(k=1, n, polcoeff(log(Q), k)^2*k*x^k)+x*O(x^n)); polcoeff(A, n)} CROSSREFS Cf. A162552, A010052, A162416 (variant). Sequence in context: A282064 A029716 A284521 * A233774 A175313 A289387 Adjacent sequences:  A162550 A162551 A162552 * A162554 A162555 A162556 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 06 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 20 22:25 EST 2018. Contains 299387 sequences. (Running on oeis4.)