login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A126285 Number of partial mappings (or mapping patterns) from n points to themselves; number of partial endofunctions. 6
1, 2, 6, 16, 45, 121, 338, 929, 2598, 7261, 20453, 57738, 163799, 465778, 1328697, 3798473, 10883314, 31237935, 89812975, 258595806, 745563123, 2152093734, 6218854285, 17988163439, 52078267380, 150899028305, 437571778542, 1269754686051, 3687025215421 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
If an endofunction is partial, then some points may be unmapped (or mapped to "undefined").
The labeled version is left-shifted A000169. - Franklin T. Adams-Watters, Jan 16 2007
LINKS
R. I. McLachlan, K. Modin, H. Munthe-Kaas, and O. Verdier, What are Butcher series, really? The story of rooted trees and numerical methods for evolution equations, arXiv preprint arXiv:1512.00906 [math.NA], 2015-2017.
N. J. A. Sloane, Transforms
FORMULA
Euler transform of A002861 + A000081 = [1, 2, 4, 9, 20, 51, 125, 329, 862, 2311, ... ] + [ 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, ...] = A124682.
Convolution of left-shifted A000081 with A001372. - Franklin T. Adams-Watters, Jan 16 2007
a(n) ~ c * d^n / sqrt(n), where d = 2.95576528565... is the Otter's rooted tree constant (see A051491) and c = 1.309039781943936352117502717... - Vaclav Kotesovec, Mar 29 2014
MATHEMATICA
nmax = 28;
a81[n_] := a81[n] = If[n<2, n, Sum[Sum[d*a81[d], {d, Divisors[j]}]*a81[n-j ], {j, 1, n-1}]/(n-1)];
A[n_] := A[n] = If[n<2, n, Sum[DivisorSum[j, #*A[#]&]*A[n-j], {j, 1, n-1} ]/(n-1)];
H[t_] := Sum[A[n]*t^n, {n, 0, nmax+2}];
F = 1/Product[1 - H[x^n], {n, 1, nmax+2}] + O[x]^(nmax+2);
A1372 = CoefficientList[F, x];
a[n_] := Sum[a81[k] * A1372[[n-k+2]], {k, 0, n+1}];
Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Aug 18 2018, after Franklin T. Adams-Watters *)
PROG
(Sage)
Pol.<t> = InfinitePolynomialRing(QQ)
@cached_function
def Z(n):
if n==0: return Pol.one()
return sum(t[k]*Z(n-k) for k in (1..n))/n
def pmagmas(n, k=1): # number of partial k-magmas on a set of n elements up to isomorphism
P = Z(n)
q = 0
coeffs = P.coefficients()
count = 0
for m in P.monomials():
p = 1
V = m.variables()
T = cartesian_product(k*[V])
for t in T:
r = [Pol.varname_key(str(u))[1] for u in t]
j = [m.degree(u) for u in t]
D = 1
lcm_r = lcm(r)
for d in divisors(lcm_r):
try: D += d*m.degrees()[-d-1]
except: break
p *= D^(prod(r)/lcm_r*prod(j))
q += coeffs[count]*p
count += 1
return q
# Philip Turecek, Nov 27 2023
CROSSREFS
Cf. A001372.
Sequence in context: A209629 A349488 A055544 * A026163 A005717 A333106
KEYWORD
nonn
AUTHOR
Christian G. Bower, Dec 25 2006 based on a suggestion from Jonathan Vos Post
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 19 04:58 EDT 2024. Contains 370952 sequences. (Running on oeis4.)