The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A209629 The number of partitions of the set [n] where each element can be colored 1 or 2 avoiding the patterns 1^12^2 and 1^22^1 in the pattern sense. 0
2, 6, 16, 44, 134, 468, 1880, 8534, 42804, 232972, 1359186, 8431288, 55297064, 381815026, 2765949856, 20960349828, 165729870678, 1364153874460, 11665484934400, 103448317519318, 949739634410652, 9013431481088948, 88304011718557298, 891917738606387792 (list; graph; refs; listen; history; text; internal format)



A partition of the set [n] is a family nonempty disjoint sets whose union is [n].  The blocks are written in order of increasing minima.  A partition of the set [n] can be written as a word p=p_1p_2...p_n where p_i=j if element i is in block j.  A partition q=q_1q_2...q_n contains partition p=p_1p_2...p_k if there is a subword q_{i_1}q_{i_2}...q_{i_k} such that q_{i_a}<q_{i_b} whenever p_a<p_b, these words are called order isomorphic.  A colored partition q contains the colored partition p in the pattern sense if there is a copy of the uncolored partition p in the uncolored partition q, and the colors on this copy of p are order isomorphic to the colors on p, otherwise we say q avoids p in the pattern sense.


Table of n, a(n) for n=1..24.

Adam M. Goyt and Lara K. Pudwell, Avoiding colored partitions of two elements in the pattern sense, arXiv preprint arXiv:1203.3786, 2012. - From N. J. A. Sloane, Sep 17 2012


a(n) = 2^n + 2*(B(n)-1), where B(n) is the n-th Bell number.


For n=2 the a(2)=6 solutions are 1^11^1, 1^11^2, 1^21^1, 1^21^2, 1^12^1, 1^22^2.


Sequence in context: A105696 A074413 A263897 * A055544 A126285 A026163

Adjacent sequences:  A209626 A209627 A209628 * A209630 A209631 A209632




Adam Goyt, Mar 13 2012



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 24 22:09 EST 2021. Contains 340414 sequences. (Running on oeis4.)