login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026163
Sum{T(k,k-1)}, k = 1,2,...,n, where T is the array in A026148.
1
1, 2, 6, 16, 45, 126, 356, 1008, 2862, 8140, 23188, 66144, 188916, 540216, 1546560, 4432512, 12717513, 36526626, 105016686, 302228080, 870613689, 2510249302, 7244285436, 20924179920, 60487084775, 174994990326, 506669921982
OFFSET
1,2
FORMULA
Conjectures from Mark van Hoeij, Oct 30 2011: (Start)
a(n) = -4*(-3)^(1/2)*(-1)^n*((n^3+11*n^2+48*n+45)*hypergeom([1/2, n+2],[1],4/3)+(3*n^2+11*n+15)*hypergeom([1/2, n+3],[1],4/3))/((n+3)*(n+5)*(n+6)*(7+n))
G.f.: (2*x-1)*((x+1)^(1/2)*(1-3*x)^(1/2)*(x-1)*(x^2+2*x-1)+x^4-4*x^3-2*x^2+4*x-1)/(2*x^8). (End)
Conjecture: -(n+7)*(3*n-31)*a(n) +3*(-n^2-35*n-76)*a(n-1) +2*(32*n^2+27*n-459)*a(n-2) +(-47*n^2+286*n-204)*a(n-3) -3*(37*n-51)*(n-2)*a(n-4)=0. - R. J. Mathar, Jun 23 2013
CROSSREFS
Cf. A026148.
Equals T(n, n-1), where T is the array in A026323.
Sequence in context: A349488 A055544 A126285 * A005717 A333106 A025266
KEYWORD
nonn
STATUS
approved