%I
%S 1,2,6,16,45,126,356,1008,2862,8140,23188,66144,188916,540216,1546560,
%T 4432512,12717513,36526626,105016686,302228080,870613689,2510249302,
%U 7244285436,20924179920,60487084775,174994990326,506669921982
%N Sum{T(k,k1)}, k = 1,2,...,n, where T is the array in A026148.
%F Conjectures from _Mark van Hoeij_, Oct 30 2011: (Start)
%F a(n) = 4*(3)^(1/2)*(1)^n*((n^3+11*n^2+48*n+45)*hypergeom([1/2, n+2],[1],4/3)+(3*n^2+11*n+15)*hypergeom([1/2, n+3],[1],4/3))/((n+3)*(n+5)*(n+6)*(7+n))
%F G.f.: (2*x1)*((x+1)^(1/2)*(13*x)^(1/2)*(x1)*(x^2+2*x1)+x^44*x^32*x^2+4*x1)/(2*x^8). (End)
%F Conjecture: (n+7)*(3*n31)*a(n) +3*(n^235*n76)*a(n1) +2*(32*n^2+27*n459)*a(n2) +(47*n^2+286*n204)*a(n3) 3*(37*n51)*(n2)*a(n4)=0.  _R. J. Mathar_, Jun 23 2013
%Y Cf. A026148.
%Y Equals T(n, n1), where T is the array in A026323.
%K nonn
%O 1,2
%A _Clark Kimberling_
