OFFSET
0,3
COMMENTS
Note this sequence counts the functions enumerated by A065440 for which the statement is vacuously true.
a(n) is also the number of partial endofunctions on {1,2,...,n} without fixed points.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..386
FORMULA
E.g.f.: exp(x)*A(x) where A(x) is the e.g.f. for A065440.
a(n) ~ exp(exp(-1)-1)*n^n. - Vaclav Kotesovec, Sep 24 2013
a(n) = Sum_{j=0..n} (j-1)^j * binomial(n,j). - Alois P. Heinz, Dec 16 2021
EXAMPLE
a(2)=2 because there are two functions f:{1,2}->{1,2} in which all the fixed points are isolated: 1->1,2->2 and 1->2,2->1 (which has no fixed points).
MAPLE
a:= n-> add((j-1)^j*binomial(n, j), j=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Dec 16 2021
MATHEMATICA
t = Sum[n^(n-1) x^n/n!, {n, 1, 20}]; Range[0, 20]! CoefficientList[Series[Exp[x] Exp[Log[1/(1-t)]-t], {x, 0, 20}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Jan 09 2012
STATUS
approved