login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277034
G.f. A(x) satisfies: A(x - A(x)^2) = x + A(-x)^2.
1
1, 2, 4, 50, 268, 3780, 28872, 438410, 4087180, 65365260, 697738072, 11624944660, 137432369816, 2371412517480, 30441246407440, 542177876315970, 7460629909188796, 136882304192481020, 2001263659780301080, 37777108180867675020, 583057080531893501960, 11314432259935102732856, 183452721005994056356272
OFFSET
1,2
FORMULA
G.f. A(x) satisfies: A(-A(-x)) = x.
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 4*x^3 + 50*x^4 + 268*x^5 + 3780*x^6 + 28872*x^7 + 438410*x^8 + 4087180*x^9 + 65365260*x^10 +...
such that A(x - A(x)^2) = x + A(-x)^2.
RELATED SERIES.
A(x)^2 = x^2 + 4*x^3 + 12*x^4 + 116*x^5 + 752*x^6 + 9032*x^7 + 77508*x^8 + 1049348*x^9 + 10608800*x^10 + 155499800*x^11 + 1763239416*x^12 +...
sqrt((A(x) - x)/2) = x + x^2 + 12*x^3 + 55*x^4 + 818*x^5 + 5740*x^6 + 92534*x^7 + 815391*x^8 + 13765254*x^9 + 141099882*x^10 + 2462940118*x^11 +...
Series_Reversion( sqrt((A(x) - x)/2) ) = x - x^2 - 10*x^3 - 294*x^5 - 24998*x^7 - 3158794*x^9 - 506665836*x^11 - 96305392110*x^13 - 20904881285306*x^15 - 5068120123901550*x^17 - 1352637633479800560*x^19 - 393510296576306819932*x^21 -...
PROG
(PARI) {a(n) = my(A=x, R); for(i=1, n, R = subst(A, x, -x + x*O(x^n)); A = subst(x + R^2, x, serreverse(x - A^2 + x*O(x^n)))); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A175814 A303382 A303443 * A156498 A211169 A085325
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 09 2016
STATUS
approved