login
A279323
Number of nX2 0..2 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
1
0, 0, 16, 152, 1536, 13776, 118664, 991616, 8109024, 65252928, 518482400, 4077987584, 31806458880, 246337686272, 1896480302208, 14525403049984, 110754291988992, 841167574029312, 6366346796688896, 48033932904861696
OFFSET
1,3
COMMENTS
Column 2 of A279327.
LINKS
FORMULA
Empirical: a(n) = 16*a(n-1) -68*a(n-2) -16*a(n-3) +300*a(n-4) +576*a(n-5) -992*a(n-6) -1856*a(n-7) -832*a(n-8) +1280*a(n-9) -256*a(n-10)
EXAMPLE
Some solutions for n=4
..0..1. .0..1. .0..1. .0..1. .0..1. .0..0. .0..1. .0..1. .0..1. .0..1
..0..1. .2..2. .2..2. .1..2. .0..0. .1..1. .1..0. .0..2. .1..0. .2..1
..2..2. .0..0. .0..0. .1..1. .1..2. .0..0. .0..0. .0..0. .2..2. .1..1
..1..2. .2..0. .0..2. .2..2. .2..0. .0..2. .1..1. .2..2. .2..1. .2..0
CROSSREFS
Cf. A279327.
Sequence in context: A073384 A022644 A297090 * A224737 A076071 A096136
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 09 2016
STATUS
approved