login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178998
Primes of the form 4^k mod 3^k.
0
7, 13, 119923, 146050183, 4039362385345521139, 289247481259011497824466400997481269, 1765256712749403700417549596608786383, 395766070055468241613007225643003404495980782673, 2596786183076854435238229837938226284218037897451862682304077097493117
OFFSET
1,1
FORMULA
{ A000040 } intersect { A064629 }.
MAPLE
select(isprime, [4&^n mod 3^n$n=1..200])[]; # Alois P. Heinz, May 18 2019
MATHEMATICA
Select[Table[PowerMod[4, n, 3^n], {n, 100}], PrimeQ] (* Alonso del Arte, Jan 03 2011 *)
PROG
(PARI) terms(n) = my(i=0); for(k=0, oo, if(i>=n, break); my(x=lift(Mod(4, 3^k)^k)); if(ispseudoprime(x), print1(x, ", "); i++))
/* Print initial 7 terms as follows: */
terms(7) \\ Felix Fröhlich, May 18 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved