The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064629 a(n) = 4^n mod 3^n. 11
 0, 1, 7, 10, 13, 52, 451, 1075, 6487, 6265, 44743, 119923, 302545, 147298, 589192, 11922706, 33341917, 4227505, 146050183, 584200732, 1174541461, 4698165844, 18792663376, 43789593895, 175158375580, 700633502320, 1955245399837, 2737249942690, 18574597255747 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS (a(n+1) - 4*a(n))/3^n is always one of -3, -2, -1, 0, 1, 2. - Robert Israel, Dec 01 2016 LINKS Harry J. Smith and Seiichi Manyama, Table of n, a(n) for n = 0..2096 (first 201 terms from Harry J. Smith) MAPLE A064629:=n->4^n mod 3^n: seq(A064629(n), n=0..40); # Wesley Ivan Hurt, Dec 01 2016 MATHEMATICA Table[PowerMod[4, n, 3^n], {n, 0, 30}] (* Harvey P. Dale, Aug 26 2012 *) PROG (PARI) { f=t=1; for (n=0, 200, write("b064629.txt", n, " ", f%t); f*=4; t*=3 ) } \\ Harry J. Smith, Sep 20 2009 (Sage) [power_mod(4, n, 3^n)for n in range(0, 27)] # Zerinvary Lajos, Nov 28 2009 (Magma) [4^n mod 3^n: n in [0..40]]; // Wesley Ivan Hurt, Dec 01 2016 CROSSREFS Cf. A002379, A060692, A064628. Cf. k^n mod (k-1)^n: A002380 (k=3), this sequence (k=4), A138589 (k=5), A138649 (k=6), A139786 (k=7), A138973 (k=8), A139733 (k=9). Sequence in context: A199427 A178508 A123834 * A215579 A306469 A059752 Adjacent sequences: A064626 A064627 A064628 * A064630 A064631 A064632 KEYWORD nonn,easy AUTHOR Labos Elemer, Oct 01 2001 EXTENSIONS a(26) from Harry J. Smith, Sep 20 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 19:35 EDT 2024. Contains 372738 sequences. (Running on oeis4.)